Protein profiling for cancer biomarker discovery using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and infrared imaging: A review
Cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Cancer biomarker-based diagnostics have applications for esta...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2011-03, Vol.690 (1), p.26-34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker might be either a molecule secreted by a tumor or it can be a specific response of the body to the presence of cancer. Cancer biomarker-based diagnostics have applications for establishing disease predisposition, early detection, cancer staging, therapy selection, identifying whether or not a cancer is metastatic, therapy monitoring, assessing prognosis, and advances in the adjuvant setting. Full adoption of cancer biomarkers in the clinic has to date been slow, and only a limited number of cancer biomarker products are currently in routine use.
Among proteomic technologies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) is a technique that has allowed rapid progress in cancer biology. Different further developed methods including e.g. SELDI (surface-enhanced laser desorption/ionization) and MELDI (material-enhanced laser desorption/ionization) are simple and high-throughput techniques that analyze with high sensitivity and specificity intact proteins expressed in complex biological mixtures, such as serum, urine, and tissues. The combination of mass spectrometry (MS) with infrared (IR) spectroscopic imaging is an attempt to combine different technologies in systems analytics. Both MALDI-TOF and infrared tissue imaging enable studying proteins distribution in tissue samples with a resolution down to 50 and 5
μm, respectively.
In this review, we summarize recent applications and the synergistic combination of these new technologies to proteomic profiling for cancer biomarker discovery. |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/j.aca.2011.01.044 |