On the capacity of log-normal fading channels

In this letter we provide an analytical expression for the moments of the capacity for the log-normal fading channel. Since the developed expression involves infinite series, we show that the error that results from the truncation of these series is insignificant. We also analyze in more details the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2009-06, Vol.57 (6), p.1603-1607
Hauptverfasser: Laourine, A., Stephenne, A., Affes, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1607
container_issue 6
container_start_page 1603
container_title IEEE transactions on communications
container_volume 57
creator Laourine, A.
Stephenne, A.
Affes, S.
description In this letter we provide an analytical expression for the moments of the capacity for the log-normal fading channel. Since the developed expression involves infinite series, we show that the error that results from the truncation of these series is insignificant. We also analyze in more details the ergodic capacity by giving a simpler expression for the remainder of the truncated series. Relying on the fact that the sum of log-normal random variables (RV) is well approximated by another lognormal RV, we further utilize the obtained results to approximate the capacity of diversity combining techniques in correlated lognormal fading channels. The results that we provide in this letter are an important tool for measuring the performance of communication links in a log-normal environment.
doi_str_mv 10.1109/TCOMM.2009.06.070109
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_869844466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089494</ieee_id><sourcerecordid>2291899971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-ff40e3d14077a78874f41af072ccbe976142e775685b76e3fa9cae6de964977f3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYj-Aj1sTNTT4vRz2qMhfiUQLnhuSmlhybKL2-XAv3cRwsGDp0lmnvdN5iHkjsKAUjDP0-FkPB4wADMANQCEbnlGelRKnYOWeE563Q1yhagvyVVKKwAQwHmP5JMqa5ch827jfNHusjpmZb3Iq7pZuzKLbl5Ui8wvXVWFMl2Ti-jKFG6Os0--3l6nw498NHn_HL6Mci8ktnmMAgKfUwGIDrVGEQV1EZB5PwsGFRUsIEql5QxV4NEZ74KaB6OEQYy8T54OvZum_t6G1Np1kXwoS1eFepusVkYLIZTqyMd_Sa64ZIybDrz_A67qbVN1X1gtlaEMGO0gcYB8U6fUhGg3TbF2zc5SsHvV9le13au2oOxBdRd7OHa75F0ZG1f5Ip2yjKJgnO_rbw9cEUI4nSVoI4zgP67VhOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856912021</pqid></control><display><type>article</type><title>On the capacity of log-normal fading channels</title><source>IEEE Electronic Library (IEL)</source><creator>Laourine, A. ; Stephenne, A. ; Affes, S.</creator><creatorcontrib>Laourine, A. ; Stephenne, A. ; Affes, S.</creatorcontrib><description>In this letter we provide an analytical expression for the moments of the capacity for the log-normal fading channel. Since the developed expression involves infinite series, we show that the error that results from the truncation of these series is insignificant. We also analyze in more details the ergodic capacity by giving a simpler expression for the remainder of the truncated series. Relying on the fact that the sum of log-normal random variables (RV) is well approximated by another lognormal RV, we further utilize the obtained results to approximate the capacity of diversity combining techniques in correlated lognormal fading channels. The results that we provide in this letter are an important tool for measuring the performance of communication links in a log-normal environment.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2009.06.070109</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation ; Channel capacity ; Channels ; Correlation ; Diversity methods ; Diversity reception ; Exact sciences and technology ; Exact solutions ; Fading ; Higher order statistics ; Information rates ; Interference ; Log-normal distribution ; log-normal distributions ; Mathematical analysis ; Random variables ; Recreational vehicles ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Transmission and modulation (techniques and equipments) ; Ultra wideband technology</subject><ispartof>IEEE transactions on communications, 2009-06, Vol.57 (6), p.1603-1607</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-ff40e3d14077a78874f41af072ccbe976142e775685b76e3fa9cae6de964977f3</citedby><cites>FETCH-LOGICAL-c457t-ff40e3d14077a78874f41af072ccbe976142e775685b76e3fa9cae6de964977f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742331$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laourine, A.</creatorcontrib><creatorcontrib>Stephenne, A.</creatorcontrib><creatorcontrib>Affes, S.</creatorcontrib><title>On the capacity of log-normal fading channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In this letter we provide an analytical expression for the moments of the capacity for the log-normal fading channel. Since the developed expression involves infinite series, we show that the error that results from the truncation of these series is insignificant. We also analyze in more details the ergodic capacity by giving a simpler expression for the remainder of the truncated series. Relying on the fact that the sum of log-normal random variables (RV) is well approximated by another lognormal RV, we further utilize the obtained results to approximate the capacity of diversity combining techniques in correlated lognormal fading channels. The results that we provide in this letter are an important tool for measuring the performance of communication links in a log-normal environment.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Correlation</subject><subject>Diversity methods</subject><subject>Diversity reception</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fading</subject><subject>Higher order statistics</subject><subject>Information rates</subject><subject>Interference</subject><subject>Log-normal distribution</subject><subject>log-normal distributions</subject><subject>Mathematical analysis</subject><subject>Random variables</subject><subject>Recreational vehicles</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Transmission and modulation (techniques and equipments)</subject><subject>Ultra wideband technology</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1PAjEQhhujiYj-Aj1sTNTT4vRz2qMhfiUQLnhuSmlhybKL2-XAv3cRwsGDp0lmnvdN5iHkjsKAUjDP0-FkPB4wADMANQCEbnlGelRKnYOWeE563Q1yhagvyVVKKwAQwHmP5JMqa5ch827jfNHusjpmZb3Iq7pZuzKLbl5Ui8wvXVWFMl2Ti-jKFG6Os0--3l6nw498NHn_HL6Mci8ktnmMAgKfUwGIDrVGEQV1EZB5PwsGFRUsIEql5QxV4NEZ74KaB6OEQYy8T54OvZum_t6G1Np1kXwoS1eFepusVkYLIZTqyMd_Sa64ZIybDrz_A67qbVN1X1gtlaEMGO0gcYB8U6fUhGg3TbF2zc5SsHvV9le13au2oOxBdRd7OHa75F0ZG1f5Ip2yjKJgnO_rbw9cEUI4nSVoI4zgP67VhOo</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Laourine, A.</creator><creator>Stephenne, A.</creator><creator>Affes, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090601</creationdate><title>On the capacity of log-normal fading channels</title><author>Laourine, A. ; Stephenne, A. ; Affes, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-ff40e3d14077a78874f41af072ccbe976142e775685b76e3fa9cae6de964977f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Correlation</topic><topic>Diversity methods</topic><topic>Diversity reception</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fading</topic><topic>Higher order statistics</topic><topic>Information rates</topic><topic>Interference</topic><topic>Log-normal distribution</topic><topic>log-normal distributions</topic><topic>Mathematical analysis</topic><topic>Random variables</topic><topic>Recreational vehicles</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Transmission and modulation (techniques and equipments)</topic><topic>Ultra wideband technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laourine, A.</creatorcontrib><creatorcontrib>Stephenne, A.</creatorcontrib><creatorcontrib>Affes, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laourine, A.</au><au>Stephenne, A.</au><au>Affes, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the capacity of log-normal fading channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>57</volume><issue>6</issue><spage>1603</spage><epage>1607</epage><pages>1603-1607</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In this letter we provide an analytical expression for the moments of the capacity for the log-normal fading channel. Since the developed expression involves infinite series, we show that the error that results from the truncation of these series is insignificant. We also analyze in more details the ergodic capacity by giving a simpler expression for the remainder of the truncated series. Relying on the fact that the sum of log-normal random variables (RV) is well approximated by another lognormal RV, we further utilize the obtained results to approximate the capacity of diversity combining techniques in correlated lognormal fading channels. The results that we provide in this letter are an important tool for measuring the performance of communication links in a log-normal environment.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2009.06.070109</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2009-06, Vol.57 (6), p.1603-1607
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_miscellaneous_869844466
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation
Channel capacity
Channels
Correlation
Diversity methods
Diversity reception
Exact sciences and technology
Exact solutions
Fading
Higher order statistics
Information rates
Interference
Log-normal distribution
log-normal distributions
Mathematical analysis
Random variables
Recreational vehicles
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Transmission and modulation (techniques and equipments)
Ultra wideband technology
title On the capacity of log-normal fading channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20capacity%20of%20log-normal%20fading%20channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Laourine,%20A.&rft.date=2009-06-01&rft.volume=57&rft.issue=6&rft.spage=1603&rft.epage=1607&rft.pages=1603-1607&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2009.06.070109&rft_dat=%3Cproquest_RIE%3E2291899971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856912021&rft_id=info:pmid/&rft_ieee_id=5089494&rfr_iscdi=true