Characterization of a zinc–cerium flow battery

► The performance of a cerium–zinc redox flow battery in methanesulfonic acid was evaluated under: ► different electrode materials, electrolyte compositions and life-cycle testing. ► Carbon felt electrodes show the highest coulombic and voltage efficiencies. ► The performance improved at high operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-06, Vol.196 (11), p.5174-5185
Hauptverfasser: Leung, P.K., Ponce-de-León, C., Low, C.T.J., Shah, A.A., Walsh, F.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5185
container_issue 11
container_start_page 5174
container_title Journal of power sources
container_volume 196
creator Leung, P.K.
Ponce-de-León, C.
Low, C.T.J.
Shah, A.A.
Walsh, F.C.
description ► The performance of a cerium–zinc redox flow battery in methanesulfonic acid was evaluated under: ► different electrode materials, electrolyte compositions and life-cycle testing. ► Carbon felt electrodes show the highest coulombic and voltage efficiencies. ► The performance improved at high operating temperatures and a faster electrolyte flow velocities. The performance of a divided, parallel-plate zinc–cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.
doi_str_mv 10.1016/j.jpowsour.2011.01.095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869843014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311002230</els_id><sourcerecordid>1777108821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e1220359997c55a2fd7f94ba98e6ee83c1b37161597f037275595300809f86f33</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvILMR3cx4M5lMkp1S_IOCG12HNE0ww3RSkxlLu_IdfEOfxJSqS4UDFy7fvedwEDrFUGDA9WVTNEu_in4IRQkYF5Ak6B4aYc5IXjJK99EICOM5Y5QcoqMYG4BEMhghmLyooHRvgtuo3vku8zZT2cZ1-vP9Q6f1sMhs61fZTPWJWh-jA6vaaE6-5xg93948Te7z6ePdw-R6musKWJ8bXJZAqBCCaUpVaefMimqmBDe1MZxoPCMM15gKZlO2bUpBCQAHYXltCRmj893fZfCvg4m9XLioTduqzvghSl4LXhHAVSIv_iQxYwwD5yVOaL1DdfAxBmPlMriFCmuJQW7LlI38KVNuy5SQlIKN0dm3h4patTaoTrv4e11WQDhUZeKudpxJ1bw5E2TUznTazF0wupdz7_6z-gILOIzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777108821</pqid></control><display><type>article</type><title>Characterization of a zinc–cerium flow battery</title><source>Elsevier ScienceDirect Journals</source><creator>Leung, P.K. ; Ponce-de-León, C. ; Low, C.T.J. ; Shah, A.A. ; Walsh, F.C.</creator><creatorcontrib>Leung, P.K. ; Ponce-de-León, C. ; Low, C.T.J. ; Shah, A.A. ; Walsh, F.C.</creatorcontrib><description>► The performance of a cerium–zinc redox flow battery in methanesulfonic acid was evaluated under: ► different electrode materials, electrolyte compositions and life-cycle testing. ► Carbon felt electrodes show the highest coulombic and voltage efficiencies. ► The performance improved at high operating temperatures and a faster electrolyte flow velocities. The performance of a divided, parallel-plate zinc–cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.01.095</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Battery ; Cerium ; Charge ; Current density ; Direct energy conversion and energy accumulation ; Discharge ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Electrolytes ; Electrolytic cells ; Energy ; Energy storage ; Energy. Thermal use of fuels ; Exact sciences and technology ; Methanesulfonic acid ; Redox flow battery ; Transport and storage of energy ; Zinc</subject><ispartof>Journal of power sources, 2011-06, Vol.196 (11), p.5174-5185</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e1220359997c55a2fd7f94ba98e6ee83c1b37161597f037275595300809f86f33</citedby><cites>FETCH-LOGICAL-c407t-e1220359997c55a2fd7f94ba98e6ee83c1b37161597f037275595300809f86f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775311002230$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24038042$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, P.K.</creatorcontrib><creatorcontrib>Ponce-de-León, C.</creatorcontrib><creatorcontrib>Low, C.T.J.</creatorcontrib><creatorcontrib>Shah, A.A.</creatorcontrib><creatorcontrib>Walsh, F.C.</creatorcontrib><title>Characterization of a zinc–cerium flow battery</title><title>Journal of power sources</title><description>► The performance of a cerium–zinc redox flow battery in methanesulfonic acid was evaluated under: ► different electrode materials, electrolyte compositions and life-cycle testing. ► Carbon felt electrodes show the highest coulombic and voltage efficiencies. ► The performance improved at high operating temperatures and a faster electrolyte flow velocities. The performance of a divided, parallel-plate zinc–cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.</description><subject>Applied sciences</subject><subject>Battery</subject><subject>Cerium</subject><subject>Charge</subject><subject>Current density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Methanesulfonic acid</subject><subject>Redox flow battery</subject><subject>Transport and storage of energy</subject><subject>Zinc</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvILMR3cx4M5lMkp1S_IOCG12HNE0ww3RSkxlLu_IdfEOfxJSqS4UDFy7fvedwEDrFUGDA9WVTNEu_in4IRQkYF5Ak6B4aYc5IXjJK99EICOM5Y5QcoqMYG4BEMhghmLyooHRvgtuo3vku8zZT2cZ1-vP9Q6f1sMhs61fZTPWJWh-jA6vaaE6-5xg93948Te7z6ePdw-R6musKWJ8bXJZAqBCCaUpVaefMimqmBDe1MZxoPCMM15gKZlO2bUpBCQAHYXltCRmj893fZfCvg4m9XLioTduqzvghSl4LXhHAVSIv_iQxYwwD5yVOaL1DdfAxBmPlMriFCmuJQW7LlI38KVNuy5SQlIKN0dm3h4patTaoTrv4e11WQDhUZeKudpxJ1bw5E2TUznTazF0wupdz7_6z-gILOIzb</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Leung, P.K.</creator><creator>Ponce-de-León, C.</creator><creator>Low, C.T.J.</creator><creator>Shah, A.A.</creator><creator>Walsh, F.C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110601</creationdate><title>Characterization of a zinc–cerium flow battery</title><author>Leung, P.K. ; Ponce-de-León, C. ; Low, C.T.J. ; Shah, A.A. ; Walsh, F.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e1220359997c55a2fd7f94ba98e6ee83c1b37161597f037275595300809f86f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Battery</topic><topic>Cerium</topic><topic>Charge</topic><topic>Current density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Methanesulfonic acid</topic><topic>Redox flow battery</topic><topic>Transport and storage of energy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, P.K.</creatorcontrib><creatorcontrib>Ponce-de-León, C.</creatorcontrib><creatorcontrib>Low, C.T.J.</creatorcontrib><creatorcontrib>Shah, A.A.</creatorcontrib><creatorcontrib>Walsh, F.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, P.K.</au><au>Ponce-de-León, C.</au><au>Low, C.T.J.</au><au>Shah, A.A.</au><au>Walsh, F.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a zinc–cerium flow battery</atitle><jtitle>Journal of power sources</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>196</volume><issue>11</issue><spage>5174</spage><epage>5185</epage><pages>5174-5185</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► The performance of a cerium–zinc redox flow battery in methanesulfonic acid was evaluated under: ► different electrode materials, electrolyte compositions and life-cycle testing. ► Carbon felt electrodes show the highest coulombic and voltage efficiencies. ► The performance improved at high operating temperatures and a faster electrolyte flow velocities. The performance of a divided, parallel-plate zinc–cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2011.01.095</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011-06, Vol.196 (11), p.5174-5185
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_869843014
source Elsevier ScienceDirect Journals
subjects Applied sciences
Battery
Cerium
Charge
Current density
Direct energy conversion and energy accumulation
Discharge
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Electrolytes
Electrolytic cells
Energy
Energy storage
Energy. Thermal use of fuels
Exact sciences and technology
Methanesulfonic acid
Redox flow battery
Transport and storage of energy
Zinc
title Characterization of a zinc–cerium flow battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20zinc%E2%80%93cerium%20flow%20battery&rft.jtitle=Journal%20of%20power%20sources&rft.au=Leung,%20P.K.&rft.date=2011-06-01&rft.volume=196&rft.issue=11&rft.spage=5174&rft.epage=5185&rft.pages=5174-5185&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2011.01.095&rft_dat=%3Cproquest_cross%3E1777108821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777108821&rft_id=info:pmid/&rft_els_id=S0378775311002230&rfr_iscdi=true