Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bionic Engineering 2011-03, Vol.8 (1), p.98-106
Hauptverfasser: Liu, Guixia, Liu, Lei, Liu, Chunyu, Zheng, Ming, Su, Lanying, Zhou, Chunguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 98
container_title Journal of Bionic Engineering
container_volume 8
creator Liu, Guixia
Liu, Lei
Liu, Chunyu
Zheng, Ming
Su, Lanying
Zhou, Chunguang
description Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.
doi_str_mv 10.1016/S1672-6529(11)60008-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_869841655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715555884</galeid><cqvip_id>37294180</cqvip_id><els_id>S1672652911600085</els_id><sourcerecordid>A715555884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-88f87209f13d26c4b1e95e57a3483dea0eb81d63bb04e1e5a9793609163ff0303</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvhJyBFXIBDih1_xDmhsqIFUUDi42w5zjh1m_W0tsOq_fV4d6teax88Gr3PjGfeqnpNyTElVH74TWXXNlK0_TtK30tCiGrEk2rVCs6alnL6tFo9SJ5XL1K6JET0rWKrCte4GXww2WOo0dU_YInYnC53d7clzluMV_V3HGFO9dbni_qTxxknb81cfwu4nWGcoHYY619gMaQcF5t9mOozCFBy0zKbjPGhVnpZPXNmTvDq_j2q_p5-_rP-0pz_PPu6PjlvLBc8N0o51bWkd5SNrbR8oNALEJ1hXLERDIFB0VGyYSAcKAjTdz2TpKeSOUcYYUfV20Pd64g3C6SsNz5ZmGcTAJeklewVp1KIojw-KCczg_bBYY7GljvCxpeZwPmSP-moKEcpXgBxAGzElCI4fR39xsRbTYneGaL3hujdtjWlem-I3jWSBy4VfZgg6ktcYihbeBT8eACLC_DPFzBZD8HC6CPYrEf0j1Z4c__lCwzTTemuB2Ov9pOxru05VYT9B7fHr2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869841655</pqid></control><display><type>article</type><title>Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks</title><source>Elsevier ScienceDirect Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Guixia ; Liu, Lei ; Liu, Chunyu ; Zheng, Ming ; Su, Lanying ; Zhou, Chunguang</creator><creatorcontrib>Liu, Guixia ; Liu, Lei ; Liu, Chunyu ; Zheng, Ming ; Su, Lanying ; Zhou, Chunguang</creatorcontrib><description>Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1016/S1672-6529(11)60008-5</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Analysis ; Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; biological knowledge ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Engineering ; gene regulatory networks ; Genes ; Neural networks ; neuro-fuzzy network ; regulators ; 基因表达数据 ; 基因调控网络 ; 模糊神经网络模型 ; 模糊规则 ; 生物学知识 ; 监管机构 ; 蜂窝系统 ; 计算生物学</subject><ispartof>Journal of Bionic Engineering, 2011-03, Vol.8 (1), p.98-106</ispartof><rights>2011 Jilin University</rights><rights>Jilin University 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-88f87209f13d26c4b1e95e57a3483dea0eb81d63bb04e1e5a9793609163ff0303</citedby><cites>FETCH-LOGICAL-c454t-88f87209f13d26c4b1e95e57a3483dea0eb81d63bb04e1e5a9793609163ff0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87903X/87903X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1672-6529(11)60008-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1672652911600085$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,41464,42533,51294,65306</link.rule.ids></links><search><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Liu, Chunyu</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><creatorcontrib>Su, Lanying</creatorcontrib><creatorcontrib>Zhou, Chunguang</creatorcontrib><title>Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks</title><title>Journal of Bionic Engineering</title><addtitle>J Bionic Eng</addtitle><addtitle>Journal of Bionics Engineering</addtitle><description>Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>biological knowledge</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Engineering</subject><subject>gene regulatory networks</subject><subject>Genes</subject><subject>Neural networks</subject><subject>neuro-fuzzy network</subject><subject>regulators</subject><subject>基因表达数据</subject><subject>基因调控网络</subject><subject>模糊神经网络模型</subject><subject>模糊规则</subject><subject>生物学知识</subject><subject>监管机构</subject><subject>蜂窝系统</subject><subject>计算生物学</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEkvhJyBFXIBDih1_xDmhsqIFUUDi42w5zjh1m_W0tsOq_fV4d6teax88Gr3PjGfeqnpNyTElVH74TWXXNlK0_TtK30tCiGrEk2rVCs6alnL6tFo9SJ5XL1K6JET0rWKrCte4GXww2WOo0dU_YInYnC53d7clzluMV_V3HGFO9dbni_qTxxknb81cfwu4nWGcoHYY619gMaQcF5t9mOozCFBy0zKbjPGhVnpZPXNmTvDq_j2q_p5-_rP-0pz_PPu6PjlvLBc8N0o51bWkd5SNrbR8oNALEJ1hXLERDIFB0VGyYSAcKAjTdz2TpKeSOUcYYUfV20Pd64g3C6SsNz5ZmGcTAJeklewVp1KIojw-KCczg_bBYY7GljvCxpeZwPmSP-moKEcpXgBxAGzElCI4fR39xsRbTYneGaL3hujdtjWlem-I3jWSBy4VfZgg6ktcYihbeBT8eACLC_DPFzBZD8HC6CPYrEf0j1Z4c__lCwzTTemuB2Ov9pOxru05VYT9B7fHr2Q</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Liu, Guixia</creator><creator>Liu, Lei</creator><creator>Liu, Chunyu</creator><creator>Zheng, Ming</creator><creator>Su, Lanying</creator><creator>Zhou, Chunguang</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Springer</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20110301</creationdate><title>Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks</title><author>Liu, Guixia ; Liu, Lei ; Liu, Chunyu ; Zheng, Ming ; Su, Lanying ; Zhou, Chunguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-88f87209f13d26c4b1e95e57a3483dea0eb81d63bb04e1e5a9793609163ff0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>biological knowledge</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Engineering</topic><topic>gene regulatory networks</topic><topic>Genes</topic><topic>Neural networks</topic><topic>neuro-fuzzy network</topic><topic>regulators</topic><topic>基因表达数据</topic><topic>基因调控网络</topic><topic>模糊神经网络模型</topic><topic>模糊规则</topic><topic>生物学知识</topic><topic>监管机构</topic><topic>蜂窝系统</topic><topic>计算生物学</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guixia</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Liu, Chunyu</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><creatorcontrib>Su, Lanying</creatorcontrib><creatorcontrib>Zhou, Chunguang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Bionic Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guixia</au><au>Liu, Lei</au><au>Liu, Chunyu</au><au>Zheng, Ming</au><au>Su, Lanying</au><au>Zhou, Chunguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks</atitle><jtitle>Journal of Bionic Engineering</jtitle><stitle>J Bionic Eng</stitle><addtitle>Journal of Bionics Engineering</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>8</volume><issue>1</issue><spage>98</spage><epage>106</epage><pages>98-106</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1672-6529(11)60008-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-6529
ispartof Journal of Bionic Engineering, 2011-03, Vol.8 (1), p.98-106
issn 1672-6529
2543-2141
language eng
recordid cdi_proquest_miscellaneous_869841655
source Elsevier ScienceDirect Journals; SpringerLink Journals - AutoHoldings
subjects Analysis
Artificial Intelligence
Biochemical Engineering
Bioinformatics
biological knowledge
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Engineering
gene regulatory networks
Genes
Neural networks
neuro-fuzzy network
regulators
基因表达数据
基因调控网络
模糊神经网络模型
模糊规则
生物学知识
监管机构
蜂窝系统
计算生物学
title Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20Neuro-Fuzzy%20Network%20Models%20with%20Biological%20Knowledge%20for%20Reconstructing%20Gene%20Regulatory%20Networks&rft.jtitle=Journal%20of%20Bionic%20Engineering&rft.au=Liu,%20Guixia&rft.date=2011-03-01&rft.volume=8&rft.issue=1&rft.spage=98&rft.epage=106&rft.pages=98-106&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1016/S1672-6529(11)60008-5&rft_dat=%3Cgale_proqu%3EA715555884%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869841655&rft_id=info:pmid/&rft_galeid=A715555884&rft_cqvip_id=37294180&rft_els_id=S1672652911600085&rfr_iscdi=true