The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions

Abstract The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium–oxygen were examined us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2011-04, Vol.44 (6), p.1137-1143
Hauptverfasser: Katz, Ira M, Martin, Andrew R, Muller, Pierre-Antoine, Terzibachi, Karine, Feng, Chia-Hsiang, Caillibotte, Georges, Sandeau, Julien, Texereau, Joëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1143
container_issue 6
container_start_page 1137
container_title Journal of biomechanics
container_volume 44
creator Katz, Ira M
Martin, Andrew R
Muller, Pierre-Antoine
Terzibachi, Karine
Feng, Chia-Hsiang
Caillibotte, Georges
Sandeau, Julien
Texereau, Joëlle
description Abstract The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium–oxygen were examined using an in vitro model, the two compartments of a dual adult test lung. Breathing helium–oxygen resulted in a consistently more uniform distribution, with the gas volume delivered to a severely obstructed compartment increased by almost 80%. An engineering approach to pipe flow was used to analyze the test lung and was extrapolated to a human lung model to show that the in vitro experimental parameters are relevant to the observed in vivo conditions. The engineering analysis also showed that helium–oxygen can decrease the relative weight of the flow resistance due to obstructions if they are inertial in nature (i.e., density dependent) due to either turbulence or laminar convective losses.
doi_str_mv 10.1016/j.jbiomech.2011.01.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869840374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929011000534</els_id><sourcerecordid>2745336731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-fd4fc26ef37290fe5efb2dcab7a24f9679d0875f052a438b7da9ca97733cfa033</originalsourceid><addsrcrecordid>eNqFks1u1DAUhS0EosPAK1SREGKVwT9JnGwQqOJPqsSCsrYc55rxkMSD7ZTOjhdg1Tfsk3AzM6VSN5UsRZG_e67vOZeQU0ZXjLLqzWa1aZ0fwKxXnDK2ong4f0QWrJYi56Kmj8mCUs7yhjf0hDyLcUMplYVsnpITzgSrqlosyN-LNWSXMCbX6-T8mHUupuDaaf_jbbaG3k3DzZ9rf7X7AWM2uKs0BYiZHrssYXHwPcygGyEkp_us9zHivRv311tkYTRw0EoQPKqAn1DAhd96l_kWG05m7hefkydW9xFeHL9L8v3jh4uzz_n5109fzt6f56aUdcptV1jDK7BC4nAWSrAt74xupeaFbSrZdLSWpaUl14WoW9npxuhGSiGM1VSIJXl90N0G_2uCmNTgooG-1_unqbpq6oIKWTxMlg0tRYGmL8nLe-TGT2HEMRSjomRoeFEiVR0oE9CmAFZtgxt02CGk5mTVRt0mq-ZkFcXDORaeHuWndoDuf9ltlAi8OgI6Gt3boEfj4h1X0Kqq-My9O3CABl86CCoaNyfUuQAmqc67h9_y9p6E6d3osOtP2EG8m1tFrqj6Nu_hvIaM4QqiW-If3tTdyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035116645</pqid></control><display><type>article</type><title>The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Katz, Ira M ; Martin, Andrew R ; Muller, Pierre-Antoine ; Terzibachi, Karine ; Feng, Chia-Hsiang ; Caillibotte, Georges ; Sandeau, Julien ; Texereau, Joëlle</creator><creatorcontrib>Katz, Ira M ; Martin, Andrew R ; Muller, Pierre-Antoine ; Terzibachi, Karine ; Feng, Chia-Hsiang ; Caillibotte, Georges ; Sandeau, Julien ; Texereau, Joëlle</creatorcontrib><description>Abstract The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium–oxygen were examined using an in vitro model, the two compartments of a dual adult test lung. Breathing helium–oxygen resulted in a consistently more uniform distribution, with the gas volume delivered to a severely obstructed compartment increased by almost 80%. An engineering approach to pipe flow was used to analyze the test lung and was extrapolated to a human lung model to show that the in vitro experimental parameters are relevant to the observed in vivo conditions. The engineering analysis also showed that helium–oxygen can decrease the relative weight of the flow resistance due to obstructions if they are inertial in nature (i.e., density dependent) due to either turbulence or laminar convective losses.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2011.01.022</identifier><identifier>PMID: 21316683</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adult ; Airway Obstruction - physiopathology ; Airways ; Biological and medical sciences ; Chronic obstructive pulmonary disease, asthma ; Compartments ; Density ; Flow resistance ; Gynecology. Andrology. Obstetrics ; Helium ; Helium-Oxygen ; Heterogeneous obstruction ; Humans ; In vitro testing ; Inertial ; Lung - physiopathology ; Lungs ; Male genital diseases ; Mathematical model ; Medical sciences ; Models, Biological ; Obstructions ; Oxygen ; Physical Medicine and Rehabilitation ; Pneumology ; Pulmonary Ventilation ; Respiratory mechanics ; Tumors ; Turbulence ; Two-compartment test lung</subject><ispartof>Journal of biomechanics, 2011-04, Vol.44 (6), p.1137-1143</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-fd4fc26ef37290fe5efb2dcab7a24f9679d0875f052a438b7da9ca97733cfa033</citedby><cites>FETCH-LOGICAL-c578t-fd4fc26ef37290fe5efb2dcab7a24f9679d0875f052a438b7da9ca97733cfa033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929011000534$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24066623$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21316683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Ira M</creatorcontrib><creatorcontrib>Martin, Andrew R</creatorcontrib><creatorcontrib>Muller, Pierre-Antoine</creatorcontrib><creatorcontrib>Terzibachi, Karine</creatorcontrib><creatorcontrib>Feng, Chia-Hsiang</creatorcontrib><creatorcontrib>Caillibotte, Georges</creatorcontrib><creatorcontrib>Sandeau, Julien</creatorcontrib><creatorcontrib>Texereau, Joëlle</creatorcontrib><title>The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium–oxygen were examined using an in vitro model, the two compartments of a dual adult test lung. Breathing helium–oxygen resulted in a consistently more uniform distribution, with the gas volume delivered to a severely obstructed compartment increased by almost 80%. An engineering approach to pipe flow was used to analyze the test lung and was extrapolated to a human lung model to show that the in vitro experimental parameters are relevant to the observed in vivo conditions. The engineering analysis also showed that helium–oxygen can decrease the relative weight of the flow resistance due to obstructions if they are inertial in nature (i.e., density dependent) due to either turbulence or laminar convective losses.</description><subject>Adult</subject><subject>Airway Obstruction - physiopathology</subject><subject>Airways</subject><subject>Biological and medical sciences</subject><subject>Chronic obstructive pulmonary disease, asthma</subject><subject>Compartments</subject><subject>Density</subject><subject>Flow resistance</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Helium</subject><subject>Helium-Oxygen</subject><subject>Heterogeneous obstruction</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>Inertial</subject><subject>Lung - physiopathology</subject><subject>Lungs</subject><subject>Male genital diseases</subject><subject>Mathematical model</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Obstructions</subject><subject>Oxygen</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Pneumology</subject><subject>Pulmonary Ventilation</subject><subject>Respiratory mechanics</subject><subject>Tumors</subject><subject>Turbulence</subject><subject>Two-compartment test lung</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks1u1DAUhS0EosPAK1SREGKVwT9JnGwQqOJPqsSCsrYc55rxkMSD7ZTOjhdg1Tfsk3AzM6VSN5UsRZG_e67vOZeQU0ZXjLLqzWa1aZ0fwKxXnDK2ong4f0QWrJYi56Kmj8mCUs7yhjf0hDyLcUMplYVsnpITzgSrqlosyN-LNWSXMCbX6-T8mHUupuDaaf_jbbaG3k3DzZ9rf7X7AWM2uKs0BYiZHrssYXHwPcygGyEkp_us9zHivRv311tkYTRw0EoQPKqAn1DAhd96l_kWG05m7hefkydW9xFeHL9L8v3jh4uzz_n5109fzt6f56aUdcptV1jDK7BC4nAWSrAt74xupeaFbSrZdLSWpaUl14WoW9npxuhGSiGM1VSIJXl90N0G_2uCmNTgooG-1_unqbpq6oIKWTxMlg0tRYGmL8nLe-TGT2HEMRSjomRoeFEiVR0oE9CmAFZtgxt02CGk5mTVRt0mq-ZkFcXDORaeHuWndoDuf9ltlAi8OgI6Gt3boEfj4h1X0Kqq-My9O3CABl86CCoaNyfUuQAmqc67h9_y9p6E6d3osOtP2EG8m1tFrqj6Nu_hvIaM4QqiW-If3tTdyw</recordid><startdate>20110407</startdate><enddate>20110407</enddate><creator>Katz, Ira M</creator><creator>Martin, Andrew R</creator><creator>Muller, Pierre-Antoine</creator><creator>Terzibachi, Karine</creator><creator>Feng, Chia-Hsiang</creator><creator>Caillibotte, Georges</creator><creator>Sandeau, Julien</creator><creator>Texereau, Joëlle</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20110407</creationdate><title>The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions</title><author>Katz, Ira M ; Martin, Andrew R ; Muller, Pierre-Antoine ; Terzibachi, Karine ; Feng, Chia-Hsiang ; Caillibotte, Georges ; Sandeau, Julien ; Texereau, Joëlle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-fd4fc26ef37290fe5efb2dcab7a24f9679d0875f052a438b7da9ca97733cfa033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Airway Obstruction - physiopathology</topic><topic>Airways</topic><topic>Biological and medical sciences</topic><topic>Chronic obstructive pulmonary disease, asthma</topic><topic>Compartments</topic><topic>Density</topic><topic>Flow resistance</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Helium</topic><topic>Helium-Oxygen</topic><topic>Heterogeneous obstruction</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>Inertial</topic><topic>Lung - physiopathology</topic><topic>Lungs</topic><topic>Male genital diseases</topic><topic>Mathematical model</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Obstructions</topic><topic>Oxygen</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Pneumology</topic><topic>Pulmonary Ventilation</topic><topic>Respiratory mechanics</topic><topic>Tumors</topic><topic>Turbulence</topic><topic>Two-compartment test lung</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Ira M</creatorcontrib><creatorcontrib>Martin, Andrew R</creatorcontrib><creatorcontrib>Muller, Pierre-Antoine</creatorcontrib><creatorcontrib>Terzibachi, Karine</creatorcontrib><creatorcontrib>Feng, Chia-Hsiang</creatorcontrib><creatorcontrib>Caillibotte, Georges</creatorcontrib><creatorcontrib>Sandeau, Julien</creatorcontrib><creatorcontrib>Texereau, Joëlle</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Ira M</au><au>Martin, Andrew R</au><au>Muller, Pierre-Antoine</au><au>Terzibachi, Karine</au><au>Feng, Chia-Hsiang</au><au>Caillibotte, Georges</au><au>Sandeau, Julien</au><au>Texereau, Joëlle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2011-04-07</date><risdate>2011</risdate><volume>44</volume><issue>6</issue><spage>1137</spage><epage>1143</epage><pages>1137-1143</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium–oxygen were examined using an in vitro model, the two compartments of a dual adult test lung. Breathing helium–oxygen resulted in a consistently more uniform distribution, with the gas volume delivered to a severely obstructed compartment increased by almost 80%. An engineering approach to pipe flow was used to analyze the test lung and was extrapolated to a human lung model to show that the in vitro experimental parameters are relevant to the observed in vivo conditions. The engineering analysis also showed that helium–oxygen can decrease the relative weight of the flow resistance due to obstructions if they are inertial in nature (i.e., density dependent) due to either turbulence or laminar convective losses.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21316683</pmid><doi>10.1016/j.jbiomech.2011.01.022</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2011-04, Vol.44 (6), p.1137-1143
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_869840374
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Airway Obstruction - physiopathology
Airways
Biological and medical sciences
Chronic obstructive pulmonary disease, asthma
Compartments
Density
Flow resistance
Gynecology. Andrology. Obstetrics
Helium
Helium-Oxygen
Heterogeneous obstruction
Humans
In vitro testing
Inertial
Lung - physiopathology
Lungs
Male genital diseases
Mathematical model
Medical sciences
Models, Biological
Obstructions
Oxygen
Physical Medicine and Rehabilitation
Pneumology
Pulmonary Ventilation
Respiratory mechanics
Tumors
Turbulence
Two-compartment test lung
title The ventilation distribution of helium–oxygen mixtures and the role of inertial losses in the presence of heterogeneous airway obstructions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ventilation%20distribution%20of%20helium%E2%80%93oxygen%20mixtures%20and%20the%20role%20of%20inertial%20losses%20in%20the%20presence%20of%20heterogeneous%20airway%20obstructions&rft.jtitle=Journal%20of%20biomechanics&rft.au=Katz,%20Ira%20M&rft.date=2011-04-07&rft.volume=44&rft.issue=6&rft.spage=1137&rft.epage=1143&rft.pages=1137-1143&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2011.01.022&rft_dat=%3Cproquest_cross%3E2745336731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035116645&rft_id=info:pmid/21316683&rft_els_id=1_s2_0_S0021929011000534&rfr_iscdi=true