Modeling of a magnetorheological damper by recursive lazy learning
Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2011-04, Vol.46 (3), p.479-485 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 3 |
container_start_page | 479 |
container_title | International journal of non-linear mechanics |
container_volume | 46 |
creator | Boada, M.J.L. Calvo, J.A. Boada, B.L. Díaz, V. |
description | Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters. |
doi_str_mv | 10.1016/j.ijnonlinmec.2008.11.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869838705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746208002187</els_id><sourcerecordid>869838705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8zElOCPxHFGqPiSilhgthznXFw5cbHTSuXX46oMjEw33Pu8unsQuqakpISK23Xp1mMYvRsHMCUjRJaUloS2J2hGZSOLWnB5imaEMFI0lWDn6CKlNclsRZoZun8NPWR6hYPFGg96NcIU4icEH1bOaI97PWwg4m6PI5htTG4H2OvvPfag45jJS3RmtU9w9Tvn6OPx4X3xXCzfnl4Wd8vC8JpPRVUJwnRTdYLVndZ9w6kUPTVV20paE0N6alnfdQIgn8k7axvLa8LyttPMVnyObo69mxi-tpAmNbhkwHs9QtgmJUUruWxInZPtMWliSCmCVZvoBh33ihJ10KbW6o82ddCmKFVZW2YXRxbyKzsHUSXjYDTQu_z_pPrg_tHyAwXPfLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869838705</pqid></control><display><type>article</type><title>Modeling of a magnetorheological damper by recursive lazy learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boada, M.J.L. ; Calvo, J.A. ; Boada, B.L. ; Díaz, V.</creator><creatorcontrib>Boada, M.J.L. ; Calvo, J.A. ; Boada, B.L. ; Díaz, V.</creatorcontrib><description>Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2008.11.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dampers ; Hysteresis ; Learning ; Magnetorheological damper ; Magnetorheological fluids ; Mathematical models ; Modeling ; Neural network ; Neural networks ; Nonlinear dynamics ; Nonlinearity ; Recursive ; Recursive lazy learning</subject><ispartof>International journal of non-linear mechanics, 2011-04, Vol.46 (3), p.479-485</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</citedby><cites>FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2008.11.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Boada, M.J.L.</creatorcontrib><creatorcontrib>Calvo, J.A.</creatorcontrib><creatorcontrib>Boada, B.L.</creatorcontrib><creatorcontrib>Díaz, V.</creatorcontrib><title>Modeling of a magnetorheological damper by recursive lazy learning</title><title>International journal of non-linear mechanics</title><description>Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.</description><subject>Dampers</subject><subject>Hysteresis</subject><subject>Learning</subject><subject>Magnetorheological damper</subject><subject>Magnetorheological fluids</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Recursive</subject><subject>Recursive lazy learning</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8zElOCPxHFGqPiSilhgthznXFw5cbHTSuXX46oMjEw33Pu8unsQuqakpISK23Xp1mMYvRsHMCUjRJaUloS2J2hGZSOLWnB5imaEMFI0lWDn6CKlNclsRZoZun8NPWR6hYPFGg96NcIU4icEH1bOaI97PWwg4m6PI5htTG4H2OvvPfag45jJS3RmtU9w9Tvn6OPx4X3xXCzfnl4Wd8vC8JpPRVUJwnRTdYLVndZ9w6kUPTVV20paE0N6alnfdQIgn8k7axvLa8LyttPMVnyObo69mxi-tpAmNbhkwHs9QtgmJUUruWxInZPtMWliSCmCVZvoBh33ihJ10KbW6o82ddCmKFVZW2YXRxbyKzsHUSXjYDTQu_z_pPrg_tHyAwXPfLM</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Boada, M.J.L.</creator><creator>Calvo, J.A.</creator><creator>Boada, B.L.</creator><creator>Díaz, V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Modeling of a magnetorheological damper by recursive lazy learning</title><author>Boada, M.J.L. ; Calvo, J.A. ; Boada, B.L. ; Díaz, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dampers</topic><topic>Hysteresis</topic><topic>Learning</topic><topic>Magnetorheological damper</topic><topic>Magnetorheological fluids</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Recursive</topic><topic>Recursive lazy learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boada, M.J.L.</creatorcontrib><creatorcontrib>Calvo, J.A.</creatorcontrib><creatorcontrib>Boada, B.L.</creatorcontrib><creatorcontrib>Díaz, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boada, M.J.L.</au><au>Calvo, J.A.</au><au>Boada, B.L.</au><au>Díaz, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a magnetorheological damper by recursive lazy learning</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>46</volume><issue>3</issue><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2008.11.019</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2011-04, Vol.46 (3), p.479-485 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_miscellaneous_869838705 |
source | Access via ScienceDirect (Elsevier) |
subjects | Dampers Hysteresis Learning Magnetorheological damper Magnetorheological fluids Mathematical models Modeling Neural network Neural networks Nonlinear dynamics Nonlinearity Recursive Recursive lazy learning |
title | Modeling of a magnetorheological damper by recursive lazy learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20magnetorheological%20damper%20by%20recursive%20lazy%20learning&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Boada,%20M.J.L.&rft.date=2011-04-01&rft.volume=46&rft.issue=3&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2008.11.019&rft_dat=%3Cproquest_cross%3E869838705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869838705&rft_id=info:pmid/&rft_els_id=S0020746208002187&rfr_iscdi=true |