Modeling of a magnetorheological damper by recursive lazy learning

Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2011-04, Vol.46 (3), p.479-485
Hauptverfasser: Boada, M.J.L., Calvo, J.A., Boada, B.L., Díaz, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 3
container_start_page 479
container_title International journal of non-linear mechanics
container_volume 46
creator Boada, M.J.L.
Calvo, J.A.
Boada, B.L.
Díaz, V.
description Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.
doi_str_mv 10.1016/j.ijnonlinmec.2008.11.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869838705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746208002187</els_id><sourcerecordid>869838705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwH8zElOCPxHFGqPiSilhgthznXFw5cbHTSuXX46oMjEw33Pu8unsQuqakpISK23Xp1mMYvRsHMCUjRJaUloS2J2hGZSOLWnB5imaEMFI0lWDn6CKlNclsRZoZun8NPWR6hYPFGg96NcIU4icEH1bOaI97PWwg4m6PI5htTG4H2OvvPfag45jJS3RmtU9w9Tvn6OPx4X3xXCzfnl4Wd8vC8JpPRVUJwnRTdYLVndZ9w6kUPTVV20paE0N6alnfdQIgn8k7axvLa8LyttPMVnyObo69mxi-tpAmNbhkwHs9QtgmJUUruWxInZPtMWliSCmCVZvoBh33ihJ10KbW6o82ddCmKFVZW2YXRxbyKzsHUSXjYDTQu_z_pPrg_tHyAwXPfLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869838705</pqid></control><display><type>article</type><title>Modeling of a magnetorheological damper by recursive lazy learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boada, M.J.L. ; Calvo, J.A. ; Boada, B.L. ; Díaz, V.</creator><creatorcontrib>Boada, M.J.L. ; Calvo, J.A. ; Boada, B.L. ; Díaz, V.</creatorcontrib><description>Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2008.11.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dampers ; Hysteresis ; Learning ; Magnetorheological damper ; Magnetorheological fluids ; Mathematical models ; Modeling ; Neural network ; Neural networks ; Nonlinear dynamics ; Nonlinearity ; Recursive ; Recursive lazy learning</subject><ispartof>International journal of non-linear mechanics, 2011-04, Vol.46 (3), p.479-485</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</citedby><cites>FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2008.11.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Boada, M.J.L.</creatorcontrib><creatorcontrib>Calvo, J.A.</creatorcontrib><creatorcontrib>Boada, B.L.</creatorcontrib><creatorcontrib>Díaz, V.</creatorcontrib><title>Modeling of a magnetorheological damper by recursive lazy learning</title><title>International journal of non-linear mechanics</title><description>Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.</description><subject>Dampers</subject><subject>Hysteresis</subject><subject>Learning</subject><subject>Magnetorheological damper</subject><subject>Magnetorheological fluids</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Recursive</subject><subject>Recursive lazy learning</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwH8zElOCPxHFGqPiSilhgthznXFw5cbHTSuXX46oMjEw33Pu8unsQuqakpISK23Xp1mMYvRsHMCUjRJaUloS2J2hGZSOLWnB5imaEMFI0lWDn6CKlNclsRZoZun8NPWR6hYPFGg96NcIU4icEH1bOaI97PWwg4m6PI5htTG4H2OvvPfag45jJS3RmtU9w9Tvn6OPx4X3xXCzfnl4Wd8vC8JpPRVUJwnRTdYLVndZ9w6kUPTVV20paE0N6alnfdQIgn8k7axvLa8LyttPMVnyObo69mxi-tpAmNbhkwHs9QtgmJUUruWxInZPtMWliSCmCVZvoBh33ihJ10KbW6o82ddCmKFVZW2YXRxbyKzsHUSXjYDTQu_z_pPrg_tHyAwXPfLM</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Boada, M.J.L.</creator><creator>Calvo, J.A.</creator><creator>Boada, B.L.</creator><creator>Díaz, V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Modeling of a magnetorheological damper by recursive lazy learning</title><author>Boada, M.J.L. ; Calvo, J.A. ; Boada, B.L. ; Díaz, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-44602a74b625baad73186d1c4998150c0d1f2dbb6ee4623bff7f3502981ba2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dampers</topic><topic>Hysteresis</topic><topic>Learning</topic><topic>Magnetorheological damper</topic><topic>Magnetorheological fluids</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Recursive</topic><topic>Recursive lazy learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boada, M.J.L.</creatorcontrib><creatorcontrib>Calvo, J.A.</creatorcontrib><creatorcontrib>Boada, B.L.</creatorcontrib><creatorcontrib>Díaz, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boada, M.J.L.</au><au>Calvo, J.A.</au><au>Boada, B.L.</au><au>Díaz, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a magnetorheological damper by recursive lazy learning</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>46</volume><issue>3</issue><spage>479</spage><epage>485</epage><pages>479-485</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>Nowadays dampers based on magnetorheological (MR) fluids are receiving significant attention specially for control of structural vibration and automotive suspensions systems. In most cases, it is necessary to develop an appropriate control strategy which is practically implementable when a suitable model for MR dampers is available. It is not a trivial task to model the dynamic of MR dampers because of their inherent non-linear and hysteretic dynamics. In this paper, a recursive lazy learning method based on neural networks is considered to model the MR damper behavior. The proposed method is validated by comparison with experimental obtained responses. Results show the estimated model correlates very well with the data obtained experimentally. The method proposed learns quickly that it is only necessarily a learning cycle, it can learn on-line and it is easy to select the network structure and calculate the model parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2008.11.019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2011-04, Vol.46 (3), p.479-485
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_869838705
source Access via ScienceDirect (Elsevier)
subjects Dampers
Hysteresis
Learning
Magnetorheological damper
Magnetorheological fluids
Mathematical models
Modeling
Neural network
Neural networks
Nonlinear dynamics
Nonlinearity
Recursive
Recursive lazy learning
title Modeling of a magnetorheological damper by recursive lazy learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20magnetorheological%20damper%20by%20recursive%20lazy%20learning&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Boada,%20M.J.L.&rft.date=2011-04-01&rft.volume=46&rft.issue=3&rft.spage=479&rft.epage=485&rft.pages=479-485&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2008.11.019&rft_dat=%3Cproquest_cross%3E869838705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869838705&rft_id=info:pmid/&rft_els_id=S0020746208002187&rfr_iscdi=true