Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway

Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2011-04, Vol.44 (6), p.1196-1199
Hauptverfasser: Kang, Min-Yeong, Hwang, Jeongeun, Lee, Jin-Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1199
container_issue 6
container_start_page 1196
container_title Journal of biomechanics
container_volume 44
creator Kang, Min-Yeong
Hwang, Jeongeun
Lee, Jin-Won
description Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re
doi_str_mv 10.1016/j.jbiomech.2011.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869837881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929011000923</els_id><sourcerecordid>859052497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEotvCX6gsIcQpi8dObOeCqKpSkCpxAM7GccZdL0m82EnR_nscdkulXnqay_eePfNeUZwDXQMF8X673rY-DGg3a0YB1pSt83hWrEBJXjKu6PNiRSmDsmENPSlOU9pSSmUlm5fFCQNeV7WsVsXPK-fQTiQ4covZb4rekjsTvZl8GBMJI9lFTGmOSPqQEnEhEkOG0GFPWu_maP-Ri8G0QbKZBzOSfh5vifHxj9m_Kl440yd8fZxnxY9PV98vP5c3X6-_XF7clLYGNpUtd462NVjBjGir2jAGsmNVBW0rlWSoDPCuQWsFsAY6qRg4alWHBiolG35WvDv47mL4PWOa9OCTxb43I4Y5aSUaxaVS8DRZN7RmVSMz-eYRuQ1zHPMaGiivAYSoF0ocKBvzgSI6vYt-MHGfIb2Epbf6Piy9hKUp03lk4fnRfm4H7P7L7tPJwNsjYJI1vYtmtD49cBUVQnCeuY8HDvOB7zxGnazH0WLnYw5Xd8E__ZcPjyxs70efX_2Fe0wPe-uUBfrbUq2lWQC5VQ3j_C_JDslv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035116657</pqid></control><display><type>article</type><title>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Kang, Min-Yeong ; Hwang, Jeongeun ; Lee, Jin-Won</creator><creatorcontrib>Kang, Min-Yeong ; Hwang, Jeongeun ; Lee, Jin-Won</creatorcontrib><description>Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re&lt;100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2011.02.011</identifier><identifier>PMID: 21354574</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air breathing ; Airways ; Bifurcation model ; Bifurcations ; Biological and medical sciences ; Biomechanics. Biorheology ; Branching angle ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Developing flow ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Length to diameter ; Lung - anatomy &amp; histology ; Lung - physiology ; Lungs ; Mathematical models ; Models, Biological ; Physical Medicine and Rehabilitation ; Pressure ; Pressure loss ; Respiratory Mechanics - physiology ; Respiratory Rate - physiology ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Tissues, organs and organisms biophysics ; Tubes ; Vertebrates: respiratory system</subject><ispartof>Journal of biomechanics, 2011-04, Vol.44 (6), p.1196-1199</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</citedby><cites>FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1035116657?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24066633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21354574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Min-Yeong</creatorcontrib><creatorcontrib>Hwang, Jeongeun</creatorcontrib><creatorcontrib>Lee, Jin-Won</creatorcontrib><title>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re&lt;100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.</description><subject>Air breathing</subject><subject>Airways</subject><subject>Bifurcation model</subject><subject>Bifurcations</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Branching angle</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Developing flow</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Length to diameter</subject><subject>Lung - anatomy &amp; histology</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Pressure</subject><subject>Pressure loss</subject><subject>Respiratory Mechanics - physiology</subject><subject>Respiratory Rate - physiology</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Tubes</subject><subject>Vertebrates: respiratory system</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkkFv1DAQhSMEotvCX6gsIcQpi8dObOeCqKpSkCpxAM7GccZdL0m82EnR_nscdkulXnqay_eePfNeUZwDXQMF8X673rY-DGg3a0YB1pSt83hWrEBJXjKu6PNiRSmDsmENPSlOU9pSSmUlm5fFCQNeV7WsVsXPK-fQTiQ4covZb4rekjsTvZl8GBMJI9lFTGmOSPqQEnEhEkOG0GFPWu_maP-Ri8G0QbKZBzOSfh5vifHxj9m_Kl440yd8fZxnxY9PV98vP5c3X6-_XF7clLYGNpUtd462NVjBjGir2jAGsmNVBW0rlWSoDPCuQWsFsAY6qRg4alWHBiolG35WvDv47mL4PWOa9OCTxb43I4Y5aSUaxaVS8DRZN7RmVSMz-eYRuQ1zHPMaGiivAYSoF0ocKBvzgSI6vYt-MHGfIb2Epbf6Piy9hKUp03lk4fnRfm4H7P7L7tPJwNsjYJI1vYtmtD49cBUVQnCeuY8HDvOB7zxGnazH0WLnYw5Xd8E__ZcPjyxs70efX_2Fe0wPe-uUBfrbUq2lWQC5VQ3j_C_JDslv</recordid><startdate>20110407</startdate><enddate>20110407</enddate><creator>Kang, Min-Yeong</creator><creator>Hwang, Jeongeun</creator><creator>Lee, Jin-Won</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20110407</creationdate><title>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</title><author>Kang, Min-Yeong ; Hwang, Jeongeun ; Lee, Jin-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air breathing</topic><topic>Airways</topic><topic>Bifurcation model</topic><topic>Bifurcations</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Branching angle</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Developing flow</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Length to diameter</topic><topic>Lung - anatomy &amp; histology</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Pressure</topic><topic>Pressure loss</topic><topic>Respiratory Mechanics - physiology</topic><topic>Respiratory Rate - physiology</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Tubes</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Min-Yeong</creatorcontrib><creatorcontrib>Hwang, Jeongeun</creatorcontrib><creatorcontrib>Lee, Jin-Won</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Min-Yeong</au><au>Hwang, Jeongeun</au><au>Lee, Jin-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2011-04-07</date><risdate>2011</risdate><volume>44</volume><issue>6</issue><spage>1196</spage><epage>1199</epage><pages>1196-1199</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re&lt;100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21354574</pmid><doi>10.1016/j.jbiomech.2011.02.011</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2011-04, Vol.44 (6), p.1196-1199
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_869837881
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Air breathing
Airways
Bifurcation model
Bifurcations
Biological and medical sciences
Biomechanics. Biorheology
Branching angle
Computational fluid dynamics
Computational fluid dynamics (CFD)
Developing flow
Fluid flow
Fundamental and applied biological sciences. Psychology
Human
Humans
Length to diameter
Lung - anatomy & histology
Lung - physiology
Lungs
Mathematical models
Models, Biological
Physical Medicine and Rehabilitation
Pressure
Pressure loss
Respiratory Mechanics - physiology
Respiratory Rate - physiology
Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics
Tissues, organs and organisms biophysics
Tubes
Vertebrates: respiratory system
title Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20geometric%20variations%20on%20pressure%20loss%20for%20a%20model%20bifurcation%20of%20the%20human%20lung%20airway&rft.jtitle=Journal%20of%20biomechanics&rft.au=Kang,%20Min-Yeong&rft.date=2011-04-07&rft.volume=44&rft.issue=6&rft.spage=1196&rft.epage=1199&rft.pages=1196-1199&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2011.02.011&rft_dat=%3Cproquest_cross%3E859052497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035116657&rft_id=info:pmid/21354574&rft_els_id=1_s2_0_S0021929011000923&rfr_iscdi=true