Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway
Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide r...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2011-04, Vol.44 (6), p.1196-1199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1199 |
---|---|
container_issue | 6 |
container_start_page | 1196 |
container_title | Journal of biomechanics |
container_volume | 44 |
creator | Kang, Min-Yeong Hwang, Jeongeun Lee, Jin-Won |
description | Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re |
doi_str_mv | 10.1016/j.jbiomech.2011.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869837881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929011000923</els_id><sourcerecordid>859052497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhSMEotvCX6gsIcQpi8dObOeCqKpSkCpxAM7GccZdL0m82EnR_nscdkulXnqay_eePfNeUZwDXQMF8X673rY-DGg3a0YB1pSt83hWrEBJXjKu6PNiRSmDsmENPSlOU9pSSmUlm5fFCQNeV7WsVsXPK-fQTiQ4covZb4rekjsTvZl8GBMJI9lFTGmOSPqQEnEhEkOG0GFPWu_maP-Ri8G0QbKZBzOSfh5vifHxj9m_Kl440yd8fZxnxY9PV98vP5c3X6-_XF7clLYGNpUtd462NVjBjGir2jAGsmNVBW0rlWSoDPCuQWsFsAY6qRg4alWHBiolG35WvDv47mL4PWOa9OCTxb43I4Y5aSUaxaVS8DRZN7RmVSMz-eYRuQ1zHPMaGiivAYSoF0ocKBvzgSI6vYt-MHGfIb2Epbf6Piy9hKUp03lk4fnRfm4H7P7L7tPJwNsjYJI1vYtmtD49cBUVQnCeuY8HDvOB7zxGnazH0WLnYw5Xd8E__ZcPjyxs70efX_2Fe0wPe-uUBfrbUq2lWQC5VQ3j_C_JDslv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035116657</pqid></control><display><type>article</type><title>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Kang, Min-Yeong ; Hwang, Jeongeun ; Lee, Jin-Won</creator><creatorcontrib>Kang, Min-Yeong ; Hwang, Jeongeun ; Lee, Jin-Won</creatorcontrib><description>Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re<100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2011.02.011</identifier><identifier>PMID: 21354574</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Air breathing ; Airways ; Bifurcation model ; Bifurcations ; Biological and medical sciences ; Biomechanics. Biorheology ; Branching angle ; Computational fluid dynamics ; Computational fluid dynamics (CFD) ; Developing flow ; Fluid flow ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Length to diameter ; Lung - anatomy & histology ; Lung - physiology ; Lungs ; Mathematical models ; Models, Biological ; Physical Medicine and Rehabilitation ; Pressure ; Pressure loss ; Respiratory Mechanics - physiology ; Respiratory Rate - physiology ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Tissues, organs and organisms biophysics ; Tubes ; Vertebrates: respiratory system</subject><ispartof>Journal of biomechanics, 2011-04, Vol.44 (6), p.1196-1199</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</citedby><cites>FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1035116657?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24066633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21354574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Min-Yeong</creatorcontrib><creatorcontrib>Hwang, Jeongeun</creatorcontrib><creatorcontrib>Lee, Jin-Won</creatorcontrib><title>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re<100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.</description><subject>Air breathing</subject><subject>Airways</subject><subject>Bifurcation model</subject><subject>Bifurcations</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Branching angle</subject><subject>Computational fluid dynamics</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Developing flow</subject><subject>Fluid flow</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Length to diameter</subject><subject>Lung - anatomy & histology</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Pressure</subject><subject>Pressure loss</subject><subject>Respiratory Mechanics - physiology</subject><subject>Respiratory Rate - physiology</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Tubes</subject><subject>Vertebrates: respiratory system</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkkFv1DAQhSMEotvCX6gsIcQpi8dObOeCqKpSkCpxAM7GccZdL0m82EnR_nscdkulXnqay_eePfNeUZwDXQMF8X673rY-DGg3a0YB1pSt83hWrEBJXjKu6PNiRSmDsmENPSlOU9pSSmUlm5fFCQNeV7WsVsXPK-fQTiQ4covZb4rekjsTvZl8GBMJI9lFTGmOSPqQEnEhEkOG0GFPWu_maP-Ri8G0QbKZBzOSfh5vifHxj9m_Kl440yd8fZxnxY9PV98vP5c3X6-_XF7clLYGNpUtd462NVjBjGir2jAGsmNVBW0rlWSoDPCuQWsFsAY6qRg4alWHBiolG35WvDv47mL4PWOa9OCTxb43I4Y5aSUaxaVS8DRZN7RmVSMz-eYRuQ1zHPMaGiivAYSoF0ocKBvzgSI6vYt-MHGfIb2Epbf6Piy9hKUp03lk4fnRfm4H7P7L7tPJwNsjYJI1vYtmtD49cBUVQnCeuY8HDvOB7zxGnazH0WLnYw5Xd8E__ZcPjyxs70efX_2Fe0wPe-uUBfrbUq2lWQC5VQ3j_C_JDslv</recordid><startdate>20110407</startdate><enddate>20110407</enddate><creator>Kang, Min-Yeong</creator><creator>Hwang, Jeongeun</creator><creator>Lee, Jin-Won</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20110407</creationdate><title>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</title><author>Kang, Min-Yeong ; Hwang, Jeongeun ; Lee, Jin-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-b3ff0b51c62a6b45a2217d2441bb7872e8a13d9ecc61291d7821f0c8dea148793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air breathing</topic><topic>Airways</topic><topic>Bifurcation model</topic><topic>Bifurcations</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Branching angle</topic><topic>Computational fluid dynamics</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Developing flow</topic><topic>Fluid flow</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Length to diameter</topic><topic>Lung - anatomy & histology</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Pressure</topic><topic>Pressure loss</topic><topic>Respiratory Mechanics - physiology</topic><topic>Respiratory Rate - physiology</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Tubes</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Min-Yeong</creatorcontrib><creatorcontrib>Hwang, Jeongeun</creatorcontrib><creatorcontrib>Lee, Jin-Won</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Min-Yeong</au><au>Hwang, Jeongeun</au><au>Lee, Jin-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2011-04-07</date><risdate>2011</risdate><volume>44</volume><issue>6</issue><spage>1196</spage><epage>1199</epage><pages>1196-1199</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Characteristics of pressure loss (Δ P ) in human lung airways were numerically investigated using a realistic model bifurcation. Flow equations were numerically solved for the steady inspiratory condition with the tube length, the branching angle and flow velocity being varied over a wide range. In general, the Δ P coefficient K showed a power-law dependence on Reynolds number (Re) and length-to-diameter ratio with a different exponent for Re≥100 than for Re<100. The effect of different branching angles on pressure loss was very weak in the smooth-branching airways.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21354574</pmid><doi>10.1016/j.jbiomech.2011.02.011</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2011-04, Vol.44 (6), p.1196-1199 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_869837881 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Air breathing Airways Bifurcation model Bifurcations Biological and medical sciences Biomechanics. Biorheology Branching angle Computational fluid dynamics Computational fluid dynamics (CFD) Developing flow Fluid flow Fundamental and applied biological sciences. Psychology Human Humans Length to diameter Lung - anatomy & histology Lung - physiology Lungs Mathematical models Models, Biological Physical Medicine and Rehabilitation Pressure Pressure loss Respiratory Mechanics - physiology Respiratory Rate - physiology Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics Tissues, organs and organisms biophysics Tubes Vertebrates: respiratory system |
title | Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20geometric%20variations%20on%20pressure%20loss%20for%20a%20model%20bifurcation%20of%20the%20human%20lung%20airway&rft.jtitle=Journal%20of%20biomechanics&rft.au=Kang,%20Min-Yeong&rft.date=2011-04-07&rft.volume=44&rft.issue=6&rft.spage=1196&rft.epage=1199&rft.pages=1196-1199&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2011.02.011&rft_dat=%3Cproquest_cross%3E859052497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035116657&rft_id=info:pmid/21354574&rft_els_id=1_s2_0_S0021929011000923&rfr_iscdi=true |