Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles

► Spark discharge generated Mg nanoparticles form large-scale agglomerated structures. ► The small size of MgH 2 nanoparticles leads to low temperature hydrogen desorption. ► The hydrogen desorption is characterized by a wide range of apparent activation energies. ► Pd nanoparticles added in-situ by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2011-05, Vol.59 (8), p.3070-3080
Hauptverfasser: Vons, V.A., Anastasopol, A., Legerstee, W.J., Mulder, F.M., Eijt, S.W.H., Schmidt-Ott, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3080
container_issue 8
container_start_page 3070
container_title Acta materialia
container_volume 59
creator Vons, V.A.
Anastasopol, A.
Legerstee, W.J.
Mulder, F.M.
Eijt, S.W.H.
Schmidt-Ott, A.
description ► Spark discharge generated Mg nanoparticles form large-scale agglomerated structures. ► The small size of MgH 2 nanoparticles leads to low temperature hydrogen desorption. ► The hydrogen desorption is characterized by a wide range of apparent activation energies. ► Pd nanoparticles added in-situ by a second spark generator induce faster kinetics. ► Spark discharge generation shows great promise to create metal hydride nanocomposites. Mg nanoparticles were synthesized using spark discharge, resulting in large-scale structures of agglomerated nanoparticles with primary particle sizes of ∼10 nm, surrounded by MgO shells 1–2 nm thick. Thermal hydrogen desorption starts at remarkably low temperatures of ∼350 K, related to the small sizes of particles, and extends over a broad temperature range to beyond 700 K, caused by the presence of oxide shells acting as activation barriers. The hydrogen sorption kinetics is increased significantly by adding Pd nanoparticles in situ during synthesis, showing the versatility of spark discharge generation for the production of metal hydride nanocomposites.
doi_str_mv 10.1016/j.actamat.2011.01.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869836372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645411000632</els_id><sourcerecordid>869836372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7174aeddec3617d700b46c30bac818f7f5f9782541f8a86934325954c3757ee43</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQcjN09Zkk2x2TyLFf1DxoueQJrNt6u5mTbJKv70p9S4MzMC832PmIXRNyYISWt3uFtok3eu0KAmlC5KLyxM0o7VkRckFO80zE01RccHP0UWMO0JoKTmZIb_yP0WCfoSg0xQAb_c2-A0M2EL0YUzOD1gPFqct4JjCZLJKd3gMPiPJQcS-xXHU4RNbF81Whw3gzB_8wOLXDR704PM-OdNBvERnre4iXP31Ofp4fHhfPhert6eX5f2qMJzIVEgquQZrwbCKSisJWfPKMLLWpqZ1K1vRNrIuBadtreuqYZyVohHcMCkkAGdzdHP0zYd-TRCT6vN10HV6AD9FlZmaVUyWWSmOShN8jAFaNQbX67BXlKhDvmqn_vJVh3wVycVl5u6OHOQ3vh0EFY2DwYB1AUxS1rt_HH4BZ26I2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869836372</pqid></control><display><type>article</type><title>Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vons, V.A. ; Anastasopol, A. ; Legerstee, W.J. ; Mulder, F.M. ; Eijt, S.W.H. ; Schmidt-Ott, A.</creator><creatorcontrib>Vons, V.A. ; Anastasopol, A. ; Legerstee, W.J. ; Mulder, F.M. ; Eijt, S.W.H. ; Schmidt-Ott, A.</creatorcontrib><description>► Spark discharge generated Mg nanoparticles form large-scale agglomerated structures. ► The small size of MgH 2 nanoparticles leads to low temperature hydrogen desorption. ► The hydrogen desorption is characterized by a wide range of apparent activation energies. ► Pd nanoparticles added in-situ by a second spark generator induce faster kinetics. ► Spark discharge generation shows great promise to create metal hydride nanocomposites. Mg nanoparticles were synthesized using spark discharge, resulting in large-scale structures of agglomerated nanoparticles with primary particle sizes of ∼10 nm, surrounded by MgO shells 1–2 nm thick. Thermal hydrogen desorption starts at remarkably low temperatures of ∼350 K, related to the small sizes of particles, and extends over a broad temperature range to beyond 700 K, caused by the presence of oxide shells acting as activation barriers. The hydrogen sorption kinetics is increased significantly by adding Pd nanoparticles in situ during synthesis, showing the versatility of spark discharge generation for the production of metal hydride nanocomposites.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2011.01.047</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Agglomeration ; Desorption ; Hydrogen storage ; Magnesium ; Metal hydrides ; Nanoparticles ; Palladium ; Shells ; Spark discharge ; X-ray diffraction</subject><ispartof>Acta materialia, 2011-05, Vol.59 (8), p.3070-3080</ispartof><rights>2011 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7174aeddec3617d700b46c30bac818f7f5f9782541f8a86934325954c3757ee43</citedby><cites>FETCH-LOGICAL-c407t-7174aeddec3617d700b46c30bac818f7f5f9782541f8a86934325954c3757ee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2011.01.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Vons, V.A.</creatorcontrib><creatorcontrib>Anastasopol, A.</creatorcontrib><creatorcontrib>Legerstee, W.J.</creatorcontrib><creatorcontrib>Mulder, F.M.</creatorcontrib><creatorcontrib>Eijt, S.W.H.</creatorcontrib><creatorcontrib>Schmidt-Ott, A.</creatorcontrib><title>Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles</title><title>Acta materialia</title><description>► Spark discharge generated Mg nanoparticles form large-scale agglomerated structures. ► The small size of MgH 2 nanoparticles leads to low temperature hydrogen desorption. ► The hydrogen desorption is characterized by a wide range of apparent activation energies. ► Pd nanoparticles added in-situ by a second spark generator induce faster kinetics. ► Spark discharge generation shows great promise to create metal hydride nanocomposites. Mg nanoparticles were synthesized using spark discharge, resulting in large-scale structures of agglomerated nanoparticles with primary particle sizes of ∼10 nm, surrounded by MgO shells 1–2 nm thick. Thermal hydrogen desorption starts at remarkably low temperatures of ∼350 K, related to the small sizes of particles, and extends over a broad temperature range to beyond 700 K, caused by the presence of oxide shells acting as activation barriers. The hydrogen sorption kinetics is increased significantly by adding Pd nanoparticles in situ during synthesis, showing the versatility of spark discharge generation for the production of metal hydride nanocomposites.</description><subject>Agglomeration</subject><subject>Desorption</subject><subject>Hydrogen storage</subject><subject>Magnesium</subject><subject>Metal hydrides</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>Shells</subject><subject>Spark discharge</subject><subject>X-ray diffraction</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQcjN09Zkk2x2TyLFf1DxoueQJrNt6u5mTbJKv70p9S4MzMC832PmIXRNyYISWt3uFtok3eu0KAmlC5KLyxM0o7VkRckFO80zE01RccHP0UWMO0JoKTmZIb_yP0WCfoSg0xQAb_c2-A0M2EL0YUzOD1gPFqct4JjCZLJKd3gMPiPJQcS-xXHU4RNbF81Whw3gzB_8wOLXDR704PM-OdNBvERnre4iXP31Ofp4fHhfPhert6eX5f2qMJzIVEgquQZrwbCKSisJWfPKMLLWpqZ1K1vRNrIuBadtreuqYZyVohHcMCkkAGdzdHP0zYd-TRCT6vN10HV6AD9FlZmaVUyWWSmOShN8jAFaNQbX67BXlKhDvmqn_vJVh3wVycVl5u6OHOQ3vh0EFY2DwYB1AUxS1rt_HH4BZ26I2A</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Vons, V.A.</creator><creator>Anastasopol, A.</creator><creator>Legerstee, W.J.</creator><creator>Mulder, F.M.</creator><creator>Eijt, S.W.H.</creator><creator>Schmidt-Ott, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110501</creationdate><title>Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles</title><author>Vons, V.A. ; Anastasopol, A. ; Legerstee, W.J. ; Mulder, F.M. ; Eijt, S.W.H. ; Schmidt-Ott, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7174aeddec3617d700b46c30bac818f7f5f9782541f8a86934325954c3757ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agglomeration</topic><topic>Desorption</topic><topic>Hydrogen storage</topic><topic>Magnesium</topic><topic>Metal hydrides</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>Shells</topic><topic>Spark discharge</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vons, V.A.</creatorcontrib><creatorcontrib>Anastasopol, A.</creatorcontrib><creatorcontrib>Legerstee, W.J.</creatorcontrib><creatorcontrib>Mulder, F.M.</creatorcontrib><creatorcontrib>Eijt, S.W.H.</creatorcontrib><creatorcontrib>Schmidt-Ott, A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vons, V.A.</au><au>Anastasopol, A.</au><au>Legerstee, W.J.</au><au>Mulder, F.M.</au><au>Eijt, S.W.H.</au><au>Schmidt-Ott, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles</atitle><jtitle>Acta materialia</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>59</volume><issue>8</issue><spage>3070</spage><epage>3080</epage><pages>3070-3080</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>► Spark discharge generated Mg nanoparticles form large-scale agglomerated structures. ► The small size of MgH 2 nanoparticles leads to low temperature hydrogen desorption. ► The hydrogen desorption is characterized by a wide range of apparent activation energies. ► Pd nanoparticles added in-situ by a second spark generator induce faster kinetics. ► Spark discharge generation shows great promise to create metal hydride nanocomposites. Mg nanoparticles were synthesized using spark discharge, resulting in large-scale structures of agglomerated nanoparticles with primary particle sizes of ∼10 nm, surrounded by MgO shells 1–2 nm thick. Thermal hydrogen desorption starts at remarkably low temperatures of ∼350 K, related to the small sizes of particles, and extends over a broad temperature range to beyond 700 K, caused by the presence of oxide shells acting as activation barriers. The hydrogen sorption kinetics is increased significantly by adding Pd nanoparticles in situ during synthesis, showing the versatility of spark discharge generation for the production of metal hydride nanocomposites.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2011.01.047</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2011-05, Vol.59 (8), p.3070-3080
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_869836372
source ScienceDirect Journals (5 years ago - present)
subjects Agglomeration
Desorption
Hydrogen storage
Magnesium
Metal hydrides
Nanoparticles
Palladium
Shells
Spark discharge
X-ray diffraction
title Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20hydrogen%20desorption%20and%20the%20structural%20properties%20of%20spark%20discharge%20generated%20Mg%20nanoparticles&rft.jtitle=Acta%20materialia&rft.au=Vons,%20V.A.&rft.date=2011-05-01&rft.volume=59&rft.issue=8&rft.spage=3070&rft.epage=3080&rft.pages=3070-3080&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2011.01.047&rft_dat=%3Cproquest_cross%3E869836372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869836372&rft_id=info:pmid/&rft_els_id=S1359645411000632&rfr_iscdi=true