Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems

This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2011-08, Vol.44 (8), p.1834-1840
Hauptverfasser: Yang, Hui, Bukkapatnam, Satish T.S., Barajas, Leandro G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1840
container_issue 8
container_start_page 1834
container_title Pattern recognition
container_volume 44
creator Yang, Hui
Bukkapatnam, Satish T.S.
Barajas, Leandro G.
description This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods. ► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.
doi_str_mv 10.1016/j.patcog.2011.01.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869836215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320311000197</els_id><sourcerecordid>869836215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKv_wMNexNPWPLb7uAhSfEHBi57DbHa2TdkmNZMK_nuztngUAiEz32RmPsauBZ8JLsq7zWwH0fjVTHIhZnw8_IRNRF2pfC4KecomnCuRK8nVObsg2nAuqpSYsPXSGxiygGYfAjqDWQuEXbbD0PuwhTGyC9hZE613GbiUCn7lPEVrKLMui2vMnHeDdQjhF0gvijDyEL4z-qaIW7pkZz0MhFfHe8o-nh7fFy_58u35dfGwzI0q65gDVLIzsm071TRoVAvQdGKeYn3FZS1RCdkr1ZRF2mDeGFP0BVd1X0BbgBSdmrLbw79pzM89UtRbSwaHARz6Pem6bGpVSjFPZHEgTfBEAXu9C3abRtaC69Gr3uiDVz161Xw8PJXdHBsAJXV9SI4s_dXKgleqUipx9wcO07ZfFoMmY0fDnU22o-68_b_RD3sWkmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869836215</pqid></control><display><type>article</type><title>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Hui ; Bukkapatnam, Satish T.S. ; Barajas, Leandro G.</creator><creatorcontrib>Yang, Hui ; Bukkapatnam, Satish T.S. ; Barajas, Leandro G.</creatorcontrib><description>This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods. ► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2011.01.010</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Dynamic tests ; Dynamical systems ; Exact sciences and technology ; Information, signal and communications theory ; Inventory control, production control. Distribution ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Nonlinear dynamics ; Nonlinearity ; Nonstationary ; Operational research and scientific management ; Operational research. Management science ; Performance prediction ; Prediction ; Recurrence plot ; Segments ; Series (mathematics) ; Signal processing ; Telecommunications and information theory ; Time series</subject><ispartof>Pattern recognition, 2011-08, Vol.44 (8), p.1834-1840</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</citedby><cites>FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2011.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24073733$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Bukkapatnam, Satish T.S.</creatorcontrib><creatorcontrib>Barajas, Leandro G.</creatorcontrib><title>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</title><title>Pattern recognition</title><description>This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods. ► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.</description><subject>Applied sciences</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Inventory control, production control. Distribution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Nonstationary</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Performance prediction</subject><subject>Prediction</subject><subject>Recurrence plot</subject><subject>Segments</subject><subject>Series (mathematics)</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Time series</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKv_wMNexNPWPLb7uAhSfEHBi57DbHa2TdkmNZMK_nuztngUAiEz32RmPsauBZ8JLsq7zWwH0fjVTHIhZnw8_IRNRF2pfC4KecomnCuRK8nVObsg2nAuqpSYsPXSGxiygGYfAjqDWQuEXbbD0PuwhTGyC9hZE613GbiUCn7lPEVrKLMui2vMnHeDdQjhF0gvijDyEL4z-qaIW7pkZz0MhFfHe8o-nh7fFy_58u35dfGwzI0q65gDVLIzsm071TRoVAvQdGKeYn3FZS1RCdkr1ZRF2mDeGFP0BVd1X0BbgBSdmrLbw79pzM89UtRbSwaHARz6Pem6bGpVSjFPZHEgTfBEAXu9C3abRtaC69Gr3uiDVz161Xw8PJXdHBsAJXV9SI4s_dXKgleqUipx9wcO07ZfFoMmY0fDnU22o-68_b_RD3sWkmg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Yang, Hui</creator><creator>Bukkapatnam, Satish T.S.</creator><creator>Barajas, Leandro G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</title><author>Yang, Hui ; Bukkapatnam, Satish T.S. ; Barajas, Leandro G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Inventory control, production control. Distribution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Nonstationary</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Performance prediction</topic><topic>Prediction</topic><topic>Recurrence plot</topic><topic>Segments</topic><topic>Series (mathematics)</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Bukkapatnam, Satish T.S.</creatorcontrib><creatorcontrib>Barajas, Leandro G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hui</au><au>Bukkapatnam, Satish T.S.</au><au>Barajas, Leandro G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</atitle><jtitle>Pattern recognition</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>44</volume><issue>8</issue><spage>1834</spage><epage>1840</epage><pages>1834-1840</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods. ► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2011.01.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2011-08, Vol.44 (8), p.1834-1840
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_869836215
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Dynamic tests
Dynamical systems
Exact sciences and technology
Information, signal and communications theory
Inventory control, production control. Distribution
Mathematical analysis
Mathematical models
Miscellaneous
Nonlinear dynamics
Nonlinearity
Nonstationary
Operational research and scientific management
Operational research. Management science
Performance prediction
Prediction
Recurrence plot
Segments
Series (mathematics)
Signal processing
Telecommunications and information theory
Time series
title Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20recurrence%20based%20performance%20prediction%20and%20prognostics%20in%20the%20nonlinear%20and%20nonstationary%20systems&rft.jtitle=Pattern%20recognition&rft.au=Yang,%20Hui&rft.date=2011-08-01&rft.volume=44&rft.issue=8&rft.spage=1834&rft.epage=1840&rft.pages=1834-1840&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2011.01.010&rft_dat=%3Cproquest_cross%3E869836215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869836215&rft_id=info:pmid/&rft_els_id=S0031320311000197&rfr_iscdi=true