Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems
This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2011-08, Vol.44 (8), p.1834-1840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1840 |
---|---|
container_issue | 8 |
container_start_page | 1834 |
container_title | Pattern recognition |
container_volume | 44 |
creator | Yang, Hui Bukkapatnam, Satish T.S. Barajas, Leandro G. |
description | This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods.
► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives. |
doi_str_mv | 10.1016/j.patcog.2011.01.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869836215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320311000197</els_id><sourcerecordid>869836215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKv_wMNexNPWPLb7uAhSfEHBi57DbHa2TdkmNZMK_nuztngUAiEz32RmPsauBZ8JLsq7zWwH0fjVTHIhZnw8_IRNRF2pfC4KecomnCuRK8nVObsg2nAuqpSYsPXSGxiygGYfAjqDWQuEXbbD0PuwhTGyC9hZE613GbiUCn7lPEVrKLMui2vMnHeDdQjhF0gvijDyEL4z-qaIW7pkZz0MhFfHe8o-nh7fFy_58u35dfGwzI0q65gDVLIzsm071TRoVAvQdGKeYn3FZS1RCdkr1ZRF2mDeGFP0BVd1X0BbgBSdmrLbw79pzM89UtRbSwaHARz6Pem6bGpVSjFPZHEgTfBEAXu9C3abRtaC69Gr3uiDVz161Xw8PJXdHBsAJXV9SI4s_dXKgleqUipx9wcO07ZfFoMmY0fDnU22o-68_b_RD3sWkmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869836215</pqid></control><display><type>article</type><title>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Hui ; Bukkapatnam, Satish T.S. ; Barajas, Leandro G.</creator><creatorcontrib>Yang, Hui ; Bukkapatnam, Satish T.S. ; Barajas, Leandro G.</creatorcontrib><description>This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods.
► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2011.01.010</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Dynamic tests ; Dynamical systems ; Exact sciences and technology ; Information, signal and communications theory ; Inventory control, production control. Distribution ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Nonlinear dynamics ; Nonlinearity ; Nonstationary ; Operational research and scientific management ; Operational research. Management science ; Performance prediction ; Prediction ; Recurrence plot ; Segments ; Series (mathematics) ; Signal processing ; Telecommunications and information theory ; Time series</subject><ispartof>Pattern recognition, 2011-08, Vol.44 (8), p.1834-1840</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</citedby><cites>FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2011.01.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24073733$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Bukkapatnam, Satish T.S.</creatorcontrib><creatorcontrib>Barajas, Leandro G.</creatorcontrib><title>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</title><title>Pattern recognition</title><description>This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods.
► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.</description><subject>Applied sciences</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Inventory control, production control. Distribution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Nonstationary</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Performance prediction</subject><subject>Prediction</subject><subject>Recurrence plot</subject><subject>Segments</subject><subject>Series (mathematics)</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Time series</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKv_wMNexNPWPLb7uAhSfEHBi57DbHa2TdkmNZMK_nuztngUAiEz32RmPsauBZ8JLsq7zWwH0fjVTHIhZnw8_IRNRF2pfC4KecomnCuRK8nVObsg2nAuqpSYsPXSGxiygGYfAjqDWQuEXbbD0PuwhTGyC9hZE613GbiUCn7lPEVrKLMui2vMnHeDdQjhF0gvijDyEL4z-qaIW7pkZz0MhFfHe8o-nh7fFy_58u35dfGwzI0q65gDVLIzsm071TRoVAvQdGKeYn3FZS1RCdkr1ZRF2mDeGFP0BVd1X0BbgBSdmrLbw79pzM89UtRbSwaHARz6Pem6bGpVSjFPZHEgTfBEAXu9C3abRtaC69Gr3uiDVz161Xw8PJXdHBsAJXV9SI4s_dXKgleqUipx9wcO07ZfFoMmY0fDnU22o-68_b_RD3sWkmg</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Yang, Hui</creator><creator>Bukkapatnam, Satish T.S.</creator><creator>Barajas, Leandro G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</title><author>Yang, Hui ; Bukkapatnam, Satish T.S. ; Barajas, Leandro G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-aa72dc2bbd399ec3baa9d152dcf70282e312f3396401759cc4f4038f4ab4a21d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Inventory control, production control. Distribution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Nonstationary</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Performance prediction</topic><topic>Prediction</topic><topic>Recurrence plot</topic><topic>Segments</topic><topic>Series (mathematics)</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Bukkapatnam, Satish T.S.</creatorcontrib><creatorcontrib>Barajas, Leandro G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hui</au><au>Bukkapatnam, Satish T.S.</au><au>Barajas, Leandro G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems</atitle><jtitle>Pattern recognition</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>44</volume><issue>8</issue><spage>1834</spage><epage>1840</epage><pages>1834-1840</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>This paper presents a local recurrence modeling approach for state and performance predictions in complex nonlinear and nonstationary systems. Nonstationarity is treated as the switching force between different stationary systems, which is shown as a series of finite time detours of system dynamics from the vicinity of a nonlinear attractor. Recurrence patterns are used to partition the system trajectory into multiple near-stationary segments. Consequently, piecewise eigen analysis of ensembles in each near-stationary segment can capture both nonlinear stochastic dynamics and nonstationarity. The experimental studies using simulated and real-world datasets demonstrate significant prediction performance improvements in comparison with other alternative methods.
► We make predictions in the nonlinear system under highly nonstationary conditions. ► Recurrence patterns are used to partition state space into near-stationary segments. ► We utilize local recurrence pattern recognition approach for prediction purposes. ► Local recurrence model captures both nonlinear dynamics and nonstationarity. ► Experiments show the superiority of local recurrence model over other alternatives.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2011.01.010</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2011-08, Vol.44 (8), p.1834-1840 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_869836215 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Dynamic tests Dynamical systems Exact sciences and technology Information, signal and communications theory Inventory control, production control. Distribution Mathematical analysis Mathematical models Miscellaneous Nonlinear dynamics Nonlinearity Nonstationary Operational research and scientific management Operational research. Management science Performance prediction Prediction Recurrence plot Segments Series (mathematics) Signal processing Telecommunications and information theory Time series |
title | Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20recurrence%20based%20performance%20prediction%20and%20prognostics%20in%20the%20nonlinear%20and%20nonstationary%20systems&rft.jtitle=Pattern%20recognition&rft.au=Yang,%20Hui&rft.date=2011-08-01&rft.volume=44&rft.issue=8&rft.spage=1834&rft.epage=1840&rft.pages=1834-1840&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2011.01.010&rft_dat=%3Cproquest_cross%3E869836215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869836215&rft_id=info:pmid/&rft_els_id=S0031320311000197&rfr_iscdi=true |