A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell

We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2011-04, Vol.59 (4), p.804-828
Hauptverfasser: Bower, A.F., Guduru, P.R., Sethuraman, V.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 828
container_issue 4
container_start_page 804
container_title Journal of the mechanics and physics of solids
container_volume 59
creator Bower, A.F.
Guduru, P.R.
Sethuraman, V.A.
description We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.
doi_str_mv 10.1016/j.jmps.2011.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869836121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509611000044</els_id><sourcerecordid>869836121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhbtQcHz8AVfZuZmON8n0BW6GwRcMuNF1SJMbJiVtatIq_ntTxrVw4HLDOYebL8tuKWwo0PK-23T9GDcMKN1AEvCzbAXAWF5AU15klzF2AFBARVdZ2BFjBzshiVOQdiC91-iIN8uOMa6JtsbM0fphTUYn42QVMc5_r4kcNEGHagpeHbG3SjoSUKopeSNJVZI4Ox3t3OfphRylM7lC566zcyNdxJu_eZV9PD2-71_yw9vz6353yBXnbMrNVre6NTXTBasqZCVvlWmKxlCQbdmqukDgJeWqklvKat3QynClaMPbJCX5VXZ36h2D_5wxTqK3cTlADujnKOqyqVMBo8nJTk4VfIwBjRiD7WX4ERTEwlR0YmEqFqYCkoCn0MMphOkPXxaDiMrioFDbkKAI7e1_8V_afoOx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869836121</pqid></control><display><type>article</type><title>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</title><source>Elsevier ScienceDirect Journals</source><creator>Bower, A.F. ; Guduru, P.R. ; Sethuraman, V.A.</creator><creatorcontrib>Bower, A.F. ; Guduru, P.R. ; Sethuraman, V.A.</creatorcontrib><description>We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2011.01.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bulk ; Cathodes ; Chemo-mechanical processes ; Diffusion ; Elastic-viscoplastic material ; Electric potential ; Electro-mechanical processes ; Electrodes ; Electrolytes ; Mathematical analysis ; Mathematical models ; Silicon substrates ; Strain ; Stresses</subject><ispartof>Journal of the mechanics and physics of solids, 2011-04, Vol.59 (4), p.804-828</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</citedby><cites>FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509611000044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bower, A.F.</creatorcontrib><creatorcontrib>Guduru, P.R.</creatorcontrib><creatorcontrib>Sethuraman, V.A.</creatorcontrib><title>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</title><title>Journal of the mechanics and physics of solids</title><description>We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.</description><subject>Bulk</subject><subject>Cathodes</subject><subject>Chemo-mechanical processes</subject><subject>Diffusion</subject><subject>Elastic-viscoplastic material</subject><subject>Electric potential</subject><subject>Electro-mechanical processes</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Silicon substrates</subject><subject>Strain</subject><subject>Stresses</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhbtQcHz8AVfZuZmON8n0BW6GwRcMuNF1SJMbJiVtatIq_ntTxrVw4HLDOYebL8tuKWwo0PK-23T9GDcMKN1AEvCzbAXAWF5AU15klzF2AFBARVdZ2BFjBzshiVOQdiC91-iIN8uOMa6JtsbM0fphTUYn42QVMc5_r4kcNEGHagpeHbG3SjoSUKopeSNJVZI4Ox3t3OfphRylM7lC566zcyNdxJu_eZV9PD2-71_yw9vz6353yBXnbMrNVre6NTXTBasqZCVvlWmKxlCQbdmqukDgJeWqklvKat3QynClaMPbJCX5VXZ36h2D_5wxTqK3cTlADujnKOqyqVMBo8nJTk4VfIwBjRiD7WX4ERTEwlR0YmEqFqYCkoCn0MMphOkPXxaDiMrioFDbkKAI7e1_8V_afoOx</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Bower, A.F.</creator><creator>Guduru, P.R.</creator><creator>Sethuraman, V.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</title><author>Bower, A.F. ; Guduru, P.R. ; Sethuraman, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bulk</topic><topic>Cathodes</topic><topic>Chemo-mechanical processes</topic><topic>Diffusion</topic><topic>Elastic-viscoplastic material</topic><topic>Electric potential</topic><topic>Electro-mechanical processes</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Silicon substrates</topic><topic>Strain</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bower, A.F.</creatorcontrib><creatorcontrib>Guduru, P.R.</creatorcontrib><creatorcontrib>Sethuraman, V.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bower, A.F.</au><au>Guduru, P.R.</au><au>Sethuraman, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>59</volume><issue>4</issue><spage>804</spage><epage>828</epage><pages>804-828</pages><issn>0022-5096</issn><abstract>We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2011.01.003</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2011-04, Vol.59 (4), p.804-828
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_869836121
source Elsevier ScienceDirect Journals
subjects Bulk
Cathodes
Chemo-mechanical processes
Diffusion
Elastic-viscoplastic material
Electric potential
Electro-mechanical processes
Electrodes
Electrolytes
Mathematical analysis
Mathematical models
Silicon substrates
Strain
Stresses
title A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20strain%20model%20of%20stress,%20diffusion,%20plastic%20flow,%20and%20electrochemical%20reactions%20in%20a%20lithium-ion%20half-cell&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Bower,%20A.F.&rft.date=2011-04-01&rft.volume=59&rft.issue=4&rft.spage=804&rft.epage=828&rft.pages=804-828&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2011.01.003&rft_dat=%3Cproquest_cross%3E869836121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869836121&rft_id=info:pmid/&rft_els_id=S0022509611000044&rfr_iscdi=true