A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell
We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electro...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2011-04, Vol.59 (4), p.804-828 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 828 |
---|---|
container_issue | 4 |
container_start_page | 804 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 59 |
creator | Bower, A.F. Guduru, P.R. Sethuraman, V.A. |
description | We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations. |
doi_str_mv | 10.1016/j.jmps.2011.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869836121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509611000044</els_id><sourcerecordid>869836121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhbtQcHz8AVfZuZmON8n0BW6GwRcMuNF1SJMbJiVtatIq_ntTxrVw4HLDOYebL8tuKWwo0PK-23T9GDcMKN1AEvCzbAXAWF5AU15klzF2AFBARVdZ2BFjBzshiVOQdiC91-iIN8uOMa6JtsbM0fphTUYn42QVMc5_r4kcNEGHagpeHbG3SjoSUKopeSNJVZI4Ox3t3OfphRylM7lC566zcyNdxJu_eZV9PD2-71_yw9vz6353yBXnbMrNVre6NTXTBasqZCVvlWmKxlCQbdmqukDgJeWqklvKat3QynClaMPbJCX5VXZ36h2D_5wxTqK3cTlADujnKOqyqVMBo8nJTk4VfIwBjRiD7WX4ERTEwlR0YmEqFqYCkoCn0MMphOkPXxaDiMrioFDbkKAI7e1_8V_afoOx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869836121</pqid></control><display><type>article</type><title>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</title><source>Elsevier ScienceDirect Journals</source><creator>Bower, A.F. ; Guduru, P.R. ; Sethuraman, V.A.</creator><creatorcontrib>Bower, A.F. ; Guduru, P.R. ; Sethuraman, V.A.</creatorcontrib><description>We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2011.01.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bulk ; Cathodes ; Chemo-mechanical processes ; Diffusion ; Elastic-viscoplastic material ; Electric potential ; Electro-mechanical processes ; Electrodes ; Electrolytes ; Mathematical analysis ; Mathematical models ; Silicon substrates ; Strain ; Stresses</subject><ispartof>Journal of the mechanics and physics of solids, 2011-04, Vol.59 (4), p.804-828</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</citedby><cites>FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022509611000044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bower, A.F.</creatorcontrib><creatorcontrib>Guduru, P.R.</creatorcontrib><creatorcontrib>Sethuraman, V.A.</creatorcontrib><title>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</title><title>Journal of the mechanics and physics of solids</title><description>We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.</description><subject>Bulk</subject><subject>Cathodes</subject><subject>Chemo-mechanical processes</subject><subject>Diffusion</subject><subject>Elastic-viscoplastic material</subject><subject>Electric potential</subject><subject>Electro-mechanical processes</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Silicon substrates</subject><subject>Strain</subject><subject>Stresses</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhbtQcHz8AVfZuZmON8n0BW6GwRcMuNF1SJMbJiVtatIq_ntTxrVw4HLDOYebL8tuKWwo0PK-23T9GDcMKN1AEvCzbAXAWF5AU15klzF2AFBARVdZ2BFjBzshiVOQdiC91-iIN8uOMa6JtsbM0fphTUYn42QVMc5_r4kcNEGHagpeHbG3SjoSUKopeSNJVZI4Ox3t3OfphRylM7lC566zcyNdxJu_eZV9PD2-71_yw9vz6353yBXnbMrNVre6NTXTBasqZCVvlWmKxlCQbdmqukDgJeWqklvKat3QynClaMPbJCX5VXZ36h2D_5wxTqK3cTlADujnKOqyqVMBo8nJTk4VfIwBjRiD7WX4ERTEwlR0YmEqFqYCkoCn0MMphOkPXxaDiMrioFDbkKAI7e1_8V_afoOx</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Bower, A.F.</creator><creator>Guduru, P.R.</creator><creator>Sethuraman, V.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</title><author>Bower, A.F. ; Guduru, P.R. ; Sethuraman, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-f4dbdbf82d5277e263bcf959f10ab6bc85e03613c7a4128d917f3cc193b93bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bulk</topic><topic>Cathodes</topic><topic>Chemo-mechanical processes</topic><topic>Diffusion</topic><topic>Elastic-viscoplastic material</topic><topic>Electric potential</topic><topic>Electro-mechanical processes</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Silicon substrates</topic><topic>Strain</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bower, A.F.</creatorcontrib><creatorcontrib>Guduru, P.R.</creatorcontrib><creatorcontrib>Sethuraman, V.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bower, A.F.</au><au>Guduru, P.R.</au><au>Sethuraman, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>59</volume><issue>4</issue><spage>804</spage><epage>828</epage><pages>804-828</pages><issn>0022-5096</issn><abstract>We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode–electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted cycles of stress and potential are shown to be in good agreement with experimental observations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2011.01.003</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2011-04, Vol.59 (4), p.804-828 |
issn | 0022-5096 |
language | eng |
recordid | cdi_proquest_miscellaneous_869836121 |
source | Elsevier ScienceDirect Journals |
subjects | Bulk Cathodes Chemo-mechanical processes Diffusion Elastic-viscoplastic material Electric potential Electro-mechanical processes Electrodes Electrolytes Mathematical analysis Mathematical models Silicon substrates Strain Stresses |
title | A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20strain%20model%20of%20stress,%20diffusion,%20plastic%20flow,%20and%20electrochemical%20reactions%20in%20a%20lithium-ion%20half-cell&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Bower,%20A.F.&rft.date=2011-04-01&rft.volume=59&rft.issue=4&rft.spage=804&rft.epage=828&rft.pages=804-828&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2011.01.003&rft_dat=%3Cproquest_cross%3E869836121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869836121&rft_id=info:pmid/&rft_els_id=S0022509611000044&rfr_iscdi=true |