Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller

The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2011-01, Vol.66 (8), p.1728-1737
Hauptverfasser: Delafosse, Angélique, Collignon, Marie-Laure, Crine, Michel, Toye, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1737
container_issue 8
container_start_page 1728
container_title Chemical engineering science
container_volume 66
creator Delafosse, Angélique
Collignon, Marie-Laure
Crine, Michel
Toye, Dominique
description The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.
doi_str_mv 10.1016/j.ces.2011.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869834492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250911000212</els_id><sourcerecordid>869834492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEkPgA9h5g2DTg1_dbYsVSkKIFEQWA1vL7S6Dh34MLneU-QJ-O25NxDJSSZbtU7dK9xLylrMtZ7z5uN96wK1gnG_ZWvwZ2XDdykopVj8nG8aYqUTNzEvyCnFfrm3L2Yb8u8QcR5fjPNE50PwbaF5StwwwZfonTpCjpzBB-nWkfUSMhxObXAYa0jxScVHdXv-kIzhcEoylD2mcqKN3gAgDLfopQU-7I3Xl-T66gX6L9-Vnt7ulcTzAMEB6TV4ENyC8eTzPyI8vl7vzr9XN96vr8883lVe1zpXWjQo17_ugvO-8kY3nmjkTVCM9qF7VphONcFxrxTvBWiOY0r12XR0a3nF5Rt6fdA9p_rsAZjtG9GUFN8G8oNWN0VIpIwr54UmSt8VBXjdSFpSfUJ9mxATBHlIxNR0tZ3aNx-5ticeu8Vi21rrIu0d5h94NIbnJR_zfKKSRrTKqcJ9OHBRX7iIkiz7C5KGPCXy2_RyfmPIA-Yqlbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777115633</pqid></control><display><type>article</type><title>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</title><source>Elsevier ScienceDirect Journals</source><creator>Delafosse, Angélique ; Collignon, Marie-Laure ; Crine, Michel ; Toye, Dominique</creator><creatorcontrib>Delafosse, Angélique ; Collignon, Marie-Laure ; Crine, Michel ; Toye, Dominique</creatorcontrib><description>The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2011.01.011</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>2D-PIV ; Applied sciences ; Axial impeller ; Chemical engineering ; Discharge ; Dissipation ; Estimates ; Exact sciences and technology ; Fluid dynamics ; Impellers ; Isotropy ; Isotropy assumptions ; Mixing ; Spatial resolution ; Stirred tank ; Tanks ; Turbulence ; Turbulent kinetic energy dissipation rate</subject><ispartof>Chemical engineering science, 2011-01, Vol.66 (8), p.1728-1737</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</citedby><cites>FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2011.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23937494$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delafosse, Angélique</creatorcontrib><creatorcontrib>Collignon, Marie-Laure</creatorcontrib><creatorcontrib>Crine, Michel</creatorcontrib><creatorcontrib>Toye, Dominique</creatorcontrib><title>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</title><title>Chemical engineering science</title><description>The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.</description><subject>2D-PIV</subject><subject>Applied sciences</subject><subject>Axial impeller</subject><subject>Chemical engineering</subject><subject>Discharge</subject><subject>Dissipation</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Impellers</subject><subject>Isotropy</subject><subject>Isotropy assumptions</subject><subject>Mixing</subject><subject>Spatial resolution</subject><subject>Stirred tank</subject><subject>Tanks</subject><subject>Turbulence</subject><subject>Turbulent kinetic energy dissipation rate</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRS0EEkPgA9h5g2DTg1_dbYsVSkKIFEQWA1vL7S6Dh34MLneU-QJ-O25NxDJSSZbtU7dK9xLylrMtZ7z5uN96wK1gnG_ZWvwZ2XDdykopVj8nG8aYqUTNzEvyCnFfrm3L2Yb8u8QcR5fjPNE50PwbaF5StwwwZfonTpCjpzBB-nWkfUSMhxObXAYa0jxScVHdXv-kIzhcEoylD2mcqKN3gAgDLfopQU-7I3Xl-T66gX6L9-Vnt7ulcTzAMEB6TV4ENyC8eTzPyI8vl7vzr9XN96vr8883lVe1zpXWjQo17_ugvO-8kY3nmjkTVCM9qF7VphONcFxrxTvBWiOY0r12XR0a3nF5Rt6fdA9p_rsAZjtG9GUFN8G8oNWN0VIpIwr54UmSt8VBXjdSFpSfUJ9mxATBHlIxNR0tZ3aNx-5ticeu8Vi21rrIu0d5h94NIbnJR_zfKKSRrTKqcJ9OHBRX7iIkiz7C5KGPCXy2_RyfmPIA-Yqlbw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Delafosse, Angélique</creator><creator>Collignon, Marie-Laure</creator><creator>Crine, Michel</creator><creator>Toye, Dominique</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110101</creationdate><title>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</title><author>Delafosse, Angélique ; Collignon, Marie-Laure ; Crine, Michel ; Toye, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2D-PIV</topic><topic>Applied sciences</topic><topic>Axial impeller</topic><topic>Chemical engineering</topic><topic>Discharge</topic><topic>Dissipation</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Impellers</topic><topic>Isotropy</topic><topic>Isotropy assumptions</topic><topic>Mixing</topic><topic>Spatial resolution</topic><topic>Stirred tank</topic><topic>Tanks</topic><topic>Turbulence</topic><topic>Turbulent kinetic energy dissipation rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delafosse, Angélique</creatorcontrib><creatorcontrib>Collignon, Marie-Laure</creatorcontrib><creatorcontrib>Crine, Michel</creatorcontrib><creatorcontrib>Toye, Dominique</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delafosse, Angélique</au><au>Collignon, Marie-Laure</au><au>Crine, Michel</au><au>Toye, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</atitle><jtitle>Chemical engineering science</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>66</volume><issue>8</issue><spage>1728</spage><epage>1737</epage><pages>1728-1737</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2011.01.011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2011-01, Vol.66 (8), p.1728-1737
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_869834492
source Elsevier ScienceDirect Journals
subjects 2D-PIV
Applied sciences
Axial impeller
Chemical engineering
Discharge
Dissipation
Estimates
Exact sciences and technology
Fluid dynamics
Impellers
Isotropy
Isotropy assumptions
Mixing
Spatial resolution
Stirred tank
Tanks
Turbulence
Turbulent kinetic energy dissipation rate
title Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20turbulent%20kinetic%20energy%20dissipation%20rate%20from%202D-PIV%20measurements%20in%20a%20vessel%20stirred%20by%20an%20axial%20Mixel%20TTP%20impeller&rft.jtitle=Chemical%20engineering%20science&rft.au=Delafosse,%20Ang%C3%A9lique&rft.date=2011-01-01&rft.volume=66&rft.issue=8&rft.spage=1728&rft.epage=1737&rft.pages=1728-1737&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2011.01.011&rft_dat=%3Cproquest_cross%3E869834492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777115633&rft_id=info:pmid/&rft_els_id=S0009250911000212&rfr_iscdi=true