Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller
The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2011-01, Vol.66 (8), p.1728-1737 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1737 |
---|---|
container_issue | 8 |
container_start_page | 1728 |
container_title | Chemical engineering science |
container_volume | 66 |
creator | Delafosse, Angélique Collignon, Marie-Laure Crine, Michel Toye, Dominique |
description | The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate. |
doi_str_mv | 10.1016/j.ces.2011.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869834492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250911000212</els_id><sourcerecordid>869834492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EEkPgA9h5g2DTg1_dbYsVSkKIFEQWA1vL7S6Dh34MLneU-QJ-O25NxDJSSZbtU7dK9xLylrMtZ7z5uN96wK1gnG_ZWvwZ2XDdykopVj8nG8aYqUTNzEvyCnFfrm3L2Yb8u8QcR5fjPNE50PwbaF5StwwwZfonTpCjpzBB-nWkfUSMhxObXAYa0jxScVHdXv-kIzhcEoylD2mcqKN3gAgDLfopQU-7I3Xl-T66gX6L9-Vnt7ulcTzAMEB6TV4ENyC8eTzPyI8vl7vzr9XN96vr8883lVe1zpXWjQo17_ugvO-8kY3nmjkTVCM9qF7VphONcFxrxTvBWiOY0r12XR0a3nF5Rt6fdA9p_rsAZjtG9GUFN8G8oNWN0VIpIwr54UmSt8VBXjdSFpSfUJ9mxATBHlIxNR0tZ3aNx-5ticeu8Vi21rrIu0d5h94NIbnJR_zfKKSRrTKqcJ9OHBRX7iIkiz7C5KGPCXy2_RyfmPIA-Yqlbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777115633</pqid></control><display><type>article</type><title>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</title><source>Elsevier ScienceDirect Journals</source><creator>Delafosse, Angélique ; Collignon, Marie-Laure ; Crine, Michel ; Toye, Dominique</creator><creatorcontrib>Delafosse, Angélique ; Collignon, Marie-Laure ; Crine, Michel ; Toye, Dominique</creatorcontrib><description>The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2011.01.011</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>2D-PIV ; Applied sciences ; Axial impeller ; Chemical engineering ; Discharge ; Dissipation ; Estimates ; Exact sciences and technology ; Fluid dynamics ; Impellers ; Isotropy ; Isotropy assumptions ; Mixing ; Spatial resolution ; Stirred tank ; Tanks ; Turbulence ; Turbulent kinetic energy dissipation rate</subject><ispartof>Chemical engineering science, 2011-01, Vol.66 (8), p.1728-1737</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</citedby><cites>FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2011.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23937494$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delafosse, Angélique</creatorcontrib><creatorcontrib>Collignon, Marie-Laure</creatorcontrib><creatorcontrib>Crine, Michel</creatorcontrib><creatorcontrib>Toye, Dominique</creatorcontrib><title>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</title><title>Chemical engineering science</title><description>The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.</description><subject>2D-PIV</subject><subject>Applied sciences</subject><subject>Axial impeller</subject><subject>Chemical engineering</subject><subject>Discharge</subject><subject>Dissipation</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Impellers</subject><subject>Isotropy</subject><subject>Isotropy assumptions</subject><subject>Mixing</subject><subject>Spatial resolution</subject><subject>Stirred tank</subject><subject>Tanks</subject><subject>Turbulence</subject><subject>Turbulent kinetic energy dissipation rate</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRS0EEkPgA9h5g2DTg1_dbYsVSkKIFEQWA1vL7S6Dh34MLneU-QJ-O25NxDJSSZbtU7dK9xLylrMtZ7z5uN96wK1gnG_ZWvwZ2XDdykopVj8nG8aYqUTNzEvyCnFfrm3L2Yb8u8QcR5fjPNE50PwbaF5StwwwZfonTpCjpzBB-nWkfUSMhxObXAYa0jxScVHdXv-kIzhcEoylD2mcqKN3gAgDLfopQU-7I3Xl-T66gX6L9-Vnt7ulcTzAMEB6TV4ENyC8eTzPyI8vl7vzr9XN96vr8883lVe1zpXWjQo17_ugvO-8kY3nmjkTVCM9qF7VphONcFxrxTvBWiOY0r12XR0a3nF5Rt6fdA9p_rsAZjtG9GUFN8G8oNWN0VIpIwr54UmSt8VBXjdSFpSfUJ9mxATBHlIxNR0tZ3aNx-5ticeu8Vi21rrIu0d5h94NIbnJR_zfKKSRrTKqcJ9OHBRX7iIkiz7C5KGPCXy2_RyfmPIA-Yqlbw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Delafosse, Angélique</creator><creator>Collignon, Marie-Laure</creator><creator>Crine, Michel</creator><creator>Toye, Dominique</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110101</creationdate><title>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</title><author>Delafosse, Angélique ; Collignon, Marie-Laure ; Crine, Michel ; Toye, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-8864f51ddf4ccbc936c180a9f463ce4d459b262a18841b20792048d8ab5f61b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2D-PIV</topic><topic>Applied sciences</topic><topic>Axial impeller</topic><topic>Chemical engineering</topic><topic>Discharge</topic><topic>Dissipation</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Impellers</topic><topic>Isotropy</topic><topic>Isotropy assumptions</topic><topic>Mixing</topic><topic>Spatial resolution</topic><topic>Stirred tank</topic><topic>Tanks</topic><topic>Turbulence</topic><topic>Turbulent kinetic energy dissipation rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delafosse, Angélique</creatorcontrib><creatorcontrib>Collignon, Marie-Laure</creatorcontrib><creatorcontrib>Crine, Michel</creatorcontrib><creatorcontrib>Toye, Dominique</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delafosse, Angélique</au><au>Collignon, Marie-Laure</au><au>Crine, Michel</au><au>Toye, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller</atitle><jtitle>Chemical engineering science</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>66</volume><issue>8</issue><spage>1728</spage><epage>1737</epage><pages>1728-1737</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong influence on the performance of many processes. However, the local dissipation rate estimation is far from easy in a stirred tank, especially near the impeller discharge where maximum values are encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by 2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D measurements and to the influence of measurement spatial resolution on the estimated values. The analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly 3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2011.01.011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2011-01, Vol.66 (8), p.1728-1737 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_869834492 |
source | Elsevier ScienceDirect Journals |
subjects | 2D-PIV Applied sciences Axial impeller Chemical engineering Discharge Dissipation Estimates Exact sciences and technology Fluid dynamics Impellers Isotropy Isotropy assumptions Mixing Spatial resolution Stirred tank Tanks Turbulence Turbulent kinetic energy dissipation rate |
title | Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20turbulent%20kinetic%20energy%20dissipation%20rate%20from%202D-PIV%20measurements%20in%20a%20vessel%20stirred%20by%20an%20axial%20Mixel%20TTP%20impeller&rft.jtitle=Chemical%20engineering%20science&rft.au=Delafosse,%20Ang%C3%A9lique&rft.date=2011-01-01&rft.volume=66&rft.issue=8&rft.spage=1728&rft.epage=1737&rft.pages=1728-1737&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2011.01.011&rft_dat=%3Cproquest_cross%3E869834492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777115633&rft_id=info:pmid/&rft_els_id=S0009250911000212&rfr_iscdi=true |