Thin film deposition using a plasma source with a hot refractory anode vacuum arc

Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I  = 100–225 A arcs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2010-12, Vol.45 (23), p.6325-6331
Hauptverfasser: Beilis, Isak I., Koulik, Yosef, Boxman, Raymond L., Arbilly, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6331
container_issue 23
container_start_page 6325
container_title Journal of materials science
container_volume 45
creator Beilis, Isak I.
Koulik, Yosef
Boxman, Raymond L.
Arbilly, David
description Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I  = 100–225 A arcs were sustained between a water-cooled coating source cathode and an anode, which was heated by the arc, separated from each other by a 10-mm gap, for times up to 150 s. The distance from the arc axis to the substrate ( L ) was 80–165 mm. Film thickness was measured with a profilometer. It was found that the deposition rate increased with time to a peak, and then decreased to a steady-state value. The peak occurred earlier when using short anode (9 mm long), e.g., with the Al cathode, L  = 110 mm, and I  = 200 A, the peak was at t p  = 15 s after arc ignition while with the long anode t p  = 45 s. t p decreased with I , from 45 s with I  = 100 A, to 10 s with I  = 225 A with the short anode. The peak is believed to appear due to initial condensation of cathode material (including MPs) on the cold anode, and its subsequent evaporation as the anode heated. In the later HRAVA steady state, a balance between condensation and evaporation on the anode is established. The deposition rate peak was significant with low melting temperature Al and Zn cathodes, which produce many MPs, and negligible with Cu and Ti cathodes.
doi_str_mv 10.1007/s10853-010-4452-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_869828881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365455228</galeid><sourcerecordid>A365455228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-905ac971bf1ffcf22053f8782eac25fffb912d650a7ae22f875a779e471098483</originalsourceid><addsrcrecordid>eNp1kVFLHTEQhUNpoVfbH9C3QB-kD6uZ2c1N9lGktYIgWvscYm5yb2Q3uSbZqv--WbYgCmUeApPvDGfmEPIF2DEwJk4yMMnbhgFruo5jA-_ICrhom06y9j1ZMYbYYLeGj-Qg53vGGBcIK3J9u_OBOj-MdGP3MfviY6BT9mFLNd0POo-a5jglY-mjL7va3MVCk3VJmxLTM9Uhbiz9o800jVQn84l8cHrI9vO_95D8_vH99uxnc3l1fnF2etmYDqE0PePa9ALuHDhnHCLjrZNCotUGuXPurgfcrDnTQlvE-sW1EL3tBLBedrI9JEfL3H2KD5PNRY0-GzsMOtg4ZSXXvUQpJVTy6xvyvi4UqjmFyHuBAmCed7xQWz1Y5YOLpa5Ya2NHb2Kw9UhWnbZr3nGOOAu-vRJUptinstVTzuri181rFhbWpJhzvZ7aJz_q9KyAqTlAtQSoaoBqDlDNtnHR5MqGrU0vtv8v-gtOvZta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259727118</pqid></control><display><type>article</type><title>Thin film deposition using a plasma source with a hot refractory anode vacuum arc</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beilis, Isak I. ; Koulik, Yosef ; Boxman, Raymond L. ; Arbilly, David</creator><creatorcontrib>Beilis, Isak I. ; Koulik, Yosef ; Boxman, Raymond L. ; Arbilly, David</creatorcontrib><description>Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I  = 100–225 A arcs were sustained between a water-cooled coating source cathode and an anode, which was heated by the arc, separated from each other by a 10-mm gap, for times up to 150 s. The distance from the arc axis to the substrate ( L ) was 80–165 mm. Film thickness was measured with a profilometer. It was found that the deposition rate increased with time to a peak, and then decreased to a steady-state value. The peak occurred earlier when using short anode (9 mm long), e.g., with the Al cathode, L  = 110 mm, and I  = 200 A, the peak was at t p  = 15 s after arc ignition while with the long anode t p  = 45 s. t p decreased with I , from 45 s with I  = 100 A, to 10 s with I  = 225 A with the short anode. The peak is believed to appear due to initial condensation of cathode material (including MPs) on the cold anode, and its subsequent evaporation as the anode heated. In the later HRAVA steady state, a balance between condensation and evaporation on the anode is established. The deposition rate peak was significant with low melting temperature Al and Zn cathodes, which produce many MPs, and negligible with Cu and Ti cathodes.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-4452-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum ; Anodes ; Arc deposition ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Coatings ; Coatings industry ; Condensates ; Copper ; Crystallography and Scattering Methods ; Deposition ; Dielectric films ; Electrode materials ; Evaporation ; Evaporation rate ; Film thickness ; Glass substrates ; Imec 2009 ; Materials Science ; Melt temperature ; Plasma ; Plasma arc heating ; Plasma physics ; Political activity ; Political aspects ; Polymer Sciences ; Profilometers ; Refractories ; Refractory materials ; Solid Mechanics ; Steady state ; Thickness measurement ; Thin films ; Titanium ; Zinc</subject><ispartof>Journal of materials science, 2010-12, Vol.45 (23), p.6325-6331</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-905ac971bf1ffcf22053f8782eac25fffb912d650a7ae22f875a779e471098483</citedby><cites>FETCH-LOGICAL-c421t-905ac971bf1ffcf22053f8782eac25fffb912d650a7ae22f875a779e471098483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-010-4452-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-010-4452-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beilis, Isak I.</creatorcontrib><creatorcontrib>Koulik, Yosef</creatorcontrib><creatorcontrib>Boxman, Raymond L.</creatorcontrib><creatorcontrib>Arbilly, David</creatorcontrib><title>Thin film deposition using a plasma source with a hot refractory anode vacuum arc</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I  = 100–225 A arcs were sustained between a water-cooled coating source cathode and an anode, which was heated by the arc, separated from each other by a 10-mm gap, for times up to 150 s. The distance from the arc axis to the substrate ( L ) was 80–165 mm. Film thickness was measured with a profilometer. It was found that the deposition rate increased with time to a peak, and then decreased to a steady-state value. The peak occurred earlier when using short anode (9 mm long), e.g., with the Al cathode, L  = 110 mm, and I  = 200 A, the peak was at t p  = 15 s after arc ignition while with the long anode t p  = 45 s. t p decreased with I , from 45 s with I  = 100 A, to 10 s with I  = 225 A with the short anode. The peak is believed to appear due to initial condensation of cathode material (including MPs) on the cold anode, and its subsequent evaporation as the anode heated. In the later HRAVA steady state, a balance between condensation and evaporation on the anode is established. The deposition rate peak was significant with low melting temperature Al and Zn cathodes, which produce many MPs, and negligible with Cu and Ti cathodes.</description><subject>Aluminum</subject><subject>Anodes</subject><subject>Arc deposition</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coatings</subject><subject>Coatings industry</subject><subject>Condensates</subject><subject>Copper</subject><subject>Crystallography and Scattering Methods</subject><subject>Deposition</subject><subject>Dielectric films</subject><subject>Electrode materials</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Film thickness</subject><subject>Glass substrates</subject><subject>Imec 2009</subject><subject>Materials Science</subject><subject>Melt temperature</subject><subject>Plasma</subject><subject>Plasma arc heating</subject><subject>Plasma physics</subject><subject>Political activity</subject><subject>Political aspects</subject><subject>Polymer Sciences</subject><subject>Profilometers</subject><subject>Refractories</subject><subject>Refractory materials</subject><subject>Solid Mechanics</subject><subject>Steady state</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>Titanium</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kVFLHTEQhUNpoVfbH9C3QB-kD6uZ2c1N9lGktYIgWvscYm5yb2Q3uSbZqv--WbYgCmUeApPvDGfmEPIF2DEwJk4yMMnbhgFruo5jA-_ICrhom06y9j1ZMYbYYLeGj-Qg53vGGBcIK3J9u_OBOj-MdGP3MfviY6BT9mFLNd0POo-a5jglY-mjL7va3MVCk3VJmxLTM9Uhbiz9o800jVQn84l8cHrI9vO_95D8_vH99uxnc3l1fnF2etmYDqE0PePa9ALuHDhnHCLjrZNCotUGuXPurgfcrDnTQlvE-sW1EL3tBLBedrI9JEfL3H2KD5PNRY0-GzsMOtg4ZSXXvUQpJVTy6xvyvi4UqjmFyHuBAmCed7xQWz1Y5YOLpa5Ya2NHb2Kw9UhWnbZr3nGOOAu-vRJUptinstVTzuri181rFhbWpJhzvZ7aJz_q9KyAqTlAtQSoaoBqDlDNtnHR5MqGrU0vtv8v-gtOvZta</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Beilis, Isak I.</creator><creator>Koulik, Yosef</creator><creator>Boxman, Raymond L.</creator><creator>Arbilly, David</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101201</creationdate><title>Thin film deposition using a plasma source with a hot refractory anode vacuum arc</title><author>Beilis, Isak I. ; Koulik, Yosef ; Boxman, Raymond L. ; Arbilly, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-905ac971bf1ffcf22053f8782eac25fffb912d650a7ae22f875a779e471098483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum</topic><topic>Anodes</topic><topic>Arc deposition</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coatings</topic><topic>Coatings industry</topic><topic>Condensates</topic><topic>Copper</topic><topic>Crystallography and Scattering Methods</topic><topic>Deposition</topic><topic>Dielectric films</topic><topic>Electrode materials</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Film thickness</topic><topic>Glass substrates</topic><topic>Imec 2009</topic><topic>Materials Science</topic><topic>Melt temperature</topic><topic>Plasma</topic><topic>Plasma arc heating</topic><topic>Plasma physics</topic><topic>Political activity</topic><topic>Political aspects</topic><topic>Polymer Sciences</topic><topic>Profilometers</topic><topic>Refractories</topic><topic>Refractory materials</topic><topic>Solid Mechanics</topic><topic>Steady state</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>Titanium</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beilis, Isak I.</creatorcontrib><creatorcontrib>Koulik, Yosef</creatorcontrib><creatorcontrib>Boxman, Raymond L.</creatorcontrib><creatorcontrib>Arbilly, David</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beilis, Isak I.</au><au>Koulik, Yosef</au><au>Boxman, Raymond L.</au><au>Arbilly, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin film deposition using a plasma source with a hot refractory anode vacuum arc</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>45</volume><issue>23</issue><spage>6325</spage><epage>6331</epage><pages>6325-6331</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Vacuum arc generated plasma was used to deposit metallic Al, Zn, and Sn coatings on glass substrates. An arc mode with a refractory anode and an expendable cathode (the “hot refractory anode vacuum arc”), overcomes macroparticle (MP) contamination experienced in other arc modes. I  = 100–225 A arcs were sustained between a water-cooled coating source cathode and an anode, which was heated by the arc, separated from each other by a 10-mm gap, for times up to 150 s. The distance from the arc axis to the substrate ( L ) was 80–165 mm. Film thickness was measured with a profilometer. It was found that the deposition rate increased with time to a peak, and then decreased to a steady-state value. The peak occurred earlier when using short anode (9 mm long), e.g., with the Al cathode, L  = 110 mm, and I  = 200 A, the peak was at t p  = 15 s after arc ignition while with the long anode t p  = 45 s. t p decreased with I , from 45 s with I  = 100 A, to 10 s with I  = 225 A with the short anode. The peak is believed to appear due to initial condensation of cathode material (including MPs) on the cold anode, and its subsequent evaporation as the anode heated. In the later HRAVA steady state, a balance between condensation and evaporation on the anode is established. The deposition rate peak was significant with low melting temperature Al and Zn cathodes, which produce many MPs, and negligible with Cu and Ti cathodes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-4452-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2010-12, Vol.45 (23), p.6325-6331
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_869828881
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Anodes
Arc deposition
Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Coatings
Coatings industry
Condensates
Copper
Crystallography and Scattering Methods
Deposition
Dielectric films
Electrode materials
Evaporation
Evaporation rate
Film thickness
Glass substrates
Imec 2009
Materials Science
Melt temperature
Plasma
Plasma arc heating
Plasma physics
Political activity
Political aspects
Polymer Sciences
Profilometers
Refractories
Refractory materials
Solid Mechanics
Steady state
Thickness measurement
Thin films
Titanium
Zinc
title Thin film deposition using a plasma source with a hot refractory anode vacuum arc
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20film%20deposition%20using%20a%20plasma%20source%20with%20a%20hot%20refractory%20anode%20vacuum%20arc&rft.jtitle=Journal%20of%20materials%20science&rft.au=Beilis,%20Isak%20I.&rft.date=2010-12-01&rft.volume=45&rft.issue=23&rft.spage=6325&rft.epage=6331&rft.pages=6325-6331&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-4452-1&rft_dat=%3Cgale_proqu%3EA365455228%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259727118&rft_id=info:pmid/&rft_galeid=A365455228&rfr_iscdi=true