A-centers and isovalent impurities in germanium: Density functional theory calculations

In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2011-03, Vol.176 (5), p.453-457
Hauptverfasser: Chroneos, A., Londos, C.A., Bracht, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 5
container_start_page 453
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 176
creator Chroneos, A.
Londos, C.A.
Bracht, H.
description In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials that are at nearest and next nearest neighbor sites to isovalent impurities (carbon, silicon and tin) in germanium. The A-center is an oxygen interstitial atom near a lattice vacancy and is an important impurity-defect pair in germanium. In germanium doped with carbon or silicon, we calculated that most of the binding energy of the cluster formed between A-centers and the carbon or silicon atoms is due to the interaction between the oxygen interstitial atom and the carbon or silicon atoms. For tin-doped germanium most of the binding energy is due to the interaction of the oversized tin atom and the lattice vacancy, which essentially provide space for tin to relax. The nearest neighbor carbon–oxygen interstitial and the silicon–oxygen interstitial pairs are significantly bound, whereas the tin–oxygen interstitial pairs are not. The results are discussed in view of analogous investigations in isovalently doped silicon.
doi_str_mv 10.1016/j.mseb.2011.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869809029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510711000201</els_id><sourcerecordid>1786199180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-dbdff37a5bade1b6293d2120ddeeaea0debfac0054efe84ac89e28bbcd1b3af43</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPOWml9aX9GNb8bKsn7DgRfEY0uRFs7TpmqQL--9tWc8LAw-GmeHNEHLNIGXAyrtN2gVsUg6MpTAC8hMyY9UiS_I6z0_JDGrOkoLB4pxchLABAMY5n5GvZaLQRfSBSqepDf1OtiNBbbcdvI0WA7WOfqPvpLNDd08f0QUb99QMTkXbO9nS-IO931MlWzW0ciLDJTkzsg149X_n5PP56WP1mqzfX95Wy3WisrKIiW60MdlCFo3UyJqS15nmjIPWiBIlaGyMVABFjgarXKqqRl41jdKsyaTJszm5OeRuff87YIiis0Fh20qH_RBEVdYV1DDmzsntUSVbVCWra1bBKOUHqfJ9CB6N2HrbSb8XDMS0t9iIaW8x7S1gBEyfPBxMONbdWfQiKItOobYeVRS6t8fsfw2XjHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786199180</pqid></control><display><type>article</type><title>A-centers and isovalent impurities in germanium: Density functional theory calculations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chroneos, A. ; Londos, C.A. ; Bracht, H.</creator><creatorcontrib>Chroneos, A. ; Londos, C.A. ; Bracht, H.</creatorcontrib><description>In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials that are at nearest and next nearest neighbor sites to isovalent impurities (carbon, silicon and tin) in germanium. The A-center is an oxygen interstitial atom near a lattice vacancy and is an important impurity-defect pair in germanium. In germanium doped with carbon or silicon, we calculated that most of the binding energy of the cluster formed between A-centers and the carbon or silicon atoms is due to the interaction between the oxygen interstitial atom and the carbon or silicon atoms. For tin-doped germanium most of the binding energy is due to the interaction of the oversized tin atom and the lattice vacancy, which essentially provide space for tin to relax. The nearest neighbor carbon–oxygen interstitial and the silicon–oxygen interstitial pairs are significantly bound, whereas the tin–oxygen interstitial pairs are not. The results are discussed in view of analogous investigations in isovalently doped silicon.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2011.01.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>A-center ; Binding energy ; Carbon ; Germanium ; Interstitials ; Lattice vacancies ; Mathematical analysis ; Nuclear power generation ; Silicon ; Tin</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2011-03, Vol.176 (5), p.453-457</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-dbdff37a5bade1b6293d2120ddeeaea0debfac0054efe84ac89e28bbcd1b3af43</citedby><cites>FETCH-LOGICAL-c365t-dbdff37a5bade1b6293d2120ddeeaea0debfac0054efe84ac89e28bbcd1b3af43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mseb.2011.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Chroneos, A.</creatorcontrib><creatorcontrib>Londos, C.A.</creatorcontrib><creatorcontrib>Bracht, H.</creatorcontrib><title>A-centers and isovalent impurities in germanium: Density functional theory calculations</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials that are at nearest and next nearest neighbor sites to isovalent impurities (carbon, silicon and tin) in germanium. The A-center is an oxygen interstitial atom near a lattice vacancy and is an important impurity-defect pair in germanium. In germanium doped with carbon or silicon, we calculated that most of the binding energy of the cluster formed between A-centers and the carbon or silicon atoms is due to the interaction between the oxygen interstitial atom and the carbon or silicon atoms. For tin-doped germanium most of the binding energy is due to the interaction of the oversized tin atom and the lattice vacancy, which essentially provide space for tin to relax. The nearest neighbor carbon–oxygen interstitial and the silicon–oxygen interstitial pairs are significantly bound, whereas the tin–oxygen interstitial pairs are not. The results are discussed in view of analogous investigations in isovalently doped silicon.</description><subject>A-center</subject><subject>Binding energy</subject><subject>Carbon</subject><subject>Germanium</subject><subject>Interstitials</subject><subject>Lattice vacancies</subject><subject>Mathematical analysis</subject><subject>Nuclear power generation</subject><subject>Silicon</subject><subject>Tin</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPOWml9aX9GNb8bKsn7DgRfEY0uRFs7TpmqQL--9tWc8LAw-GmeHNEHLNIGXAyrtN2gVsUg6MpTAC8hMyY9UiS_I6z0_JDGrOkoLB4pxchLABAMY5n5GvZaLQRfSBSqepDf1OtiNBbbcdvI0WA7WOfqPvpLNDd08f0QUb99QMTkXbO9nS-IO931MlWzW0ciLDJTkzsg149X_n5PP56WP1mqzfX95Wy3WisrKIiW60MdlCFo3UyJqS15nmjIPWiBIlaGyMVABFjgarXKqqRl41jdKsyaTJszm5OeRuff87YIiis0Fh20qH_RBEVdYV1DDmzsntUSVbVCWra1bBKOUHqfJ9CB6N2HrbSb8XDMS0t9iIaW8x7S1gBEyfPBxMONbdWfQiKItOobYeVRS6t8fsfw2XjHw</recordid><startdate>20110325</startdate><enddate>20110325</enddate><creator>Chroneos, A.</creator><creator>Londos, C.A.</creator><creator>Bracht, H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110325</creationdate><title>A-centers and isovalent impurities in germanium: Density functional theory calculations</title><author>Chroneos, A. ; Londos, C.A. ; Bracht, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-dbdff37a5bade1b6293d2120ddeeaea0debfac0054efe84ac89e28bbcd1b3af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A-center</topic><topic>Binding energy</topic><topic>Carbon</topic><topic>Germanium</topic><topic>Interstitials</topic><topic>Lattice vacancies</topic><topic>Mathematical analysis</topic><topic>Nuclear power generation</topic><topic>Silicon</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chroneos, A.</creatorcontrib><creatorcontrib>Londos, C.A.</creatorcontrib><creatorcontrib>Bracht, H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chroneos, A.</au><au>Londos, C.A.</au><au>Bracht, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-centers and isovalent impurities in germanium: Density functional theory calculations</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2011-03-25</date><risdate>2011</risdate><volume>176</volume><issue>5</issue><spage>453</spage><epage>457</epage><pages>453-457</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials that are at nearest and next nearest neighbor sites to isovalent impurities (carbon, silicon and tin) in germanium. The A-center is an oxygen interstitial atom near a lattice vacancy and is an important impurity-defect pair in germanium. In germanium doped with carbon or silicon, we calculated that most of the binding energy of the cluster formed between A-centers and the carbon or silicon atoms is due to the interaction between the oxygen interstitial atom and the carbon or silicon atoms. For tin-doped germanium most of the binding energy is due to the interaction of the oversized tin atom and the lattice vacancy, which essentially provide space for tin to relax. The nearest neighbor carbon–oxygen interstitial and the silicon–oxygen interstitial pairs are significantly bound, whereas the tin–oxygen interstitial pairs are not. The results are discussed in view of analogous investigations in isovalently doped silicon.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2011.01.004</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2011-03, Vol.176 (5), p.453-457
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_miscellaneous_869809029
source Access via ScienceDirect (Elsevier)
subjects A-center
Binding energy
Carbon
Germanium
Interstitials
Lattice vacancies
Mathematical analysis
Nuclear power generation
Silicon
Tin
title A-centers and isovalent impurities in germanium: Density functional theory calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-centers%20and%20isovalent%20impurities%20in%20germanium:%20Density%20functional%20theory%20calculations&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Chroneos,%20A.&rft.date=2011-03-25&rft.volume=176&rft.issue=5&rft.spage=453&rft.epage=457&rft.pages=453-457&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2011.01.004&rft_dat=%3Cproquest_cross%3E1786199180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786199180&rft_id=info:pmid/&rft_els_id=S0921510711000201&rfr_iscdi=true