Prediction error criterion for selecting variables in a linear regression model
Several criteria, such as CV, C p , AIC, CAIC, and MAIC, are used for selecting variables in linear regression models. It might be noted that C p has been proposed as an estimator of the expected standardized prediction error, although the target risk function of CV might be regarded as the expected...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2011-04, Vol.63 (2), p.387-403 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403 |
---|---|
container_issue | 2 |
container_start_page | 387 |
container_title | Annals of the Institute of Statistical Mathematics |
container_volume | 63 |
creator | Fujikoshi, Yasunori Kan, Tamio Takahashi, Shin Sakurai, Tetsuro |
description | Several criteria, such as CV,
C
p
, AIC, CAIC, and MAIC, are used for selecting variables in linear regression models. It might be noted that
C
p
has been proposed as an estimator of the expected standardized prediction error, although the target risk function of CV might be regarded as the expected prediction error
R
PE
. On the other hand, the target risk function of AIC, CAIC, and MAIC is the expected log-predictive likelihood. In this paper, we propose a prediction error criterion, PE, which is an estimator of the expected prediction error
R
PE
. Consequently, it is also a competitor of CV. Results of this study show that PE is an unbiased estimator when the true model is contained in the full model. The property is shown without the assumption of normality. In fact, PE is demonstrated as more faithful for its risk function than CV. The prediction error criterion PE is extended to the multivariate case. Furthermore, using simulations, we examine some peculiarities of all these criteria. |
doi_str_mv | 10.1007/s10463-009-0233-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869807316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>869807316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-45d185fabd67f2fe4314d52d6d9167068ddf3155bae2275a925669e798d1cdea3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouH78Ad6KF0_RSdIk7VEWv2BhPeg5ZJvpkqXbrpOu4H9vlgqC4Gl4M783PB5jVwJuBYC9SwJKozhAzUEqxfURmwltJa9By2M2A5DAVd6csrOUNgCgpJIztnwlDLEZ49AXSDRQ0VAckQ66zSphh_nar4tPT9GvOkxF7AtfdLFHTwXhmjClA74dAnYX7KT1XcLLn3nO3h8f3ubPfLF8epnfL3ijrBp5qYOodOtXwdhWtlgqUQYtgwm1MBZMFUKb0-qVRymt9rXUxtRo6yqIJqBX5-xm-ruj4WOPaXTbmBrsOt_jsE-uMnUFVgmTyes_5GbYU5_DuUobYbUyKkNighoaUiJs3Y7i1tOXE-AOBbupYJcLdoeCnc4eOXlSZvs10u_j_03feqx9rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856175363</pqid></control><display><type>article</type><title>Prediction error criterion for selecting variables in a linear regression model</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fujikoshi, Yasunori ; Kan, Tamio ; Takahashi, Shin ; Sakurai, Tetsuro</creator><creatorcontrib>Fujikoshi, Yasunori ; Kan, Tamio ; Takahashi, Shin ; Sakurai, Tetsuro</creatorcontrib><description>Several criteria, such as CV,
C
p
, AIC, CAIC, and MAIC, are used for selecting variables in linear regression models. It might be noted that
C
p
has been proposed as an estimator of the expected standardized prediction error, although the target risk function of CV might be regarded as the expected prediction error
R
PE
. On the other hand, the target risk function of AIC, CAIC, and MAIC is the expected log-predictive likelihood. In this paper, we propose a prediction error criterion, PE, which is an estimator of the expected prediction error
R
PE
. Consequently, it is also a competitor of CV. Results of this study show that PE is an unbiased estimator when the true model is contained in the full model. The property is shown without the assumption of normality. In fact, PE is demonstrated as more faithful for its risk function than CV. The prediction error criterion PE is extended to the multivariate case. Furthermore, using simulations, we examine some peculiarities of all these criteria.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-009-0233-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Criteria ; Economics ; Error analysis ; Errors ; Estimators ; Finance ; Insurance ; Management ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Polyethylenes ; Predictions ; Regression ; Regression analysis ; Risk ; Statistics ; Statistics for Business ; Studies ; Variables</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2011-04, Vol.63 (2), p.387-403</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2009</rights><rights>The Institute of Statistical Mathematics, Tokyo 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-45d185fabd67f2fe4314d52d6d9167068ddf3155bae2275a925669e798d1cdea3</citedby><cites>FETCH-LOGICAL-c373t-45d185fabd67f2fe4314d52d6d9167068ddf3155bae2275a925669e798d1cdea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-009-0233-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-009-0233-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fujikoshi, Yasunori</creatorcontrib><creatorcontrib>Kan, Tamio</creatorcontrib><creatorcontrib>Takahashi, Shin</creatorcontrib><creatorcontrib>Sakurai, Tetsuro</creatorcontrib><title>Prediction error criterion for selecting variables in a linear regression model</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>Several criteria, such as CV,
C
p
, AIC, CAIC, and MAIC, are used for selecting variables in linear regression models. It might be noted that
C
p
has been proposed as an estimator of the expected standardized prediction error, although the target risk function of CV might be regarded as the expected prediction error
R
PE
. On the other hand, the target risk function of AIC, CAIC, and MAIC is the expected log-predictive likelihood. In this paper, we propose a prediction error criterion, PE, which is an estimator of the expected prediction error
R
PE
. Consequently, it is also a competitor of CV. Results of this study show that PE is an unbiased estimator when the true model is contained in the full model. The property is shown without the assumption of normality. In fact, PE is demonstrated as more faithful for its risk function than CV. The prediction error criterion PE is extended to the multivariate case. Furthermore, using simulations, we examine some peculiarities of all these criteria.</description><subject>Criteria</subject><subject>Economics</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimators</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polyethylenes</subject><subject>Predictions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><subject>Variables</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LxDAQxYMouH78Ad6KF0_RSdIk7VEWv2BhPeg5ZJvpkqXbrpOu4H9vlgqC4Gl4M783PB5jVwJuBYC9SwJKozhAzUEqxfURmwltJa9By2M2A5DAVd6csrOUNgCgpJIztnwlDLEZ49AXSDRQ0VAckQ66zSphh_nar4tPT9GvOkxF7AtfdLFHTwXhmjClA74dAnYX7KT1XcLLn3nO3h8f3ubPfLF8epnfL3ijrBp5qYOodOtXwdhWtlgqUQYtgwm1MBZMFUKb0-qVRymt9rXUxtRo6yqIJqBX5-xm-ruj4WOPaXTbmBrsOt_jsE-uMnUFVgmTyes_5GbYU5_DuUobYbUyKkNighoaUiJs3Y7i1tOXE-AOBbupYJcLdoeCnc4eOXlSZvs10u_j_03feqx9rg</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Fujikoshi, Yasunori</creator><creator>Kan, Tamio</creator><creator>Takahashi, Shin</creator><creator>Sakurai, Tetsuro</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110401</creationdate><title>Prediction error criterion for selecting variables in a linear regression model</title><author>Fujikoshi, Yasunori ; Kan, Tamio ; Takahashi, Shin ; Sakurai, Tetsuro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-45d185fabd67f2fe4314d52d6d9167068ddf3155bae2275a925669e798d1cdea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Criteria</topic><topic>Economics</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimators</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polyethylenes</topic><topic>Predictions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujikoshi, Yasunori</creatorcontrib><creatorcontrib>Kan, Tamio</creatorcontrib><creatorcontrib>Takahashi, Shin</creatorcontrib><creatorcontrib>Sakurai, Tetsuro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujikoshi, Yasunori</au><au>Kan, Tamio</au><au>Takahashi, Shin</au><au>Sakurai, Tetsuro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction error criterion for selecting variables in a linear regression model</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>63</volume><issue>2</issue><spage>387</spage><epage>403</epage><pages>387-403</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>Several criteria, such as CV,
C
p
, AIC, CAIC, and MAIC, are used for selecting variables in linear regression models. It might be noted that
C
p
has been proposed as an estimator of the expected standardized prediction error, although the target risk function of CV might be regarded as the expected prediction error
R
PE
. On the other hand, the target risk function of AIC, CAIC, and MAIC is the expected log-predictive likelihood. In this paper, we propose a prediction error criterion, PE, which is an estimator of the expected prediction error
R
PE
. Consequently, it is also a competitor of CV. Results of this study show that PE is an unbiased estimator when the true model is contained in the full model. The property is shown without the assumption of normality. In fact, PE is demonstrated as more faithful for its risk function than CV. The prediction error criterion PE is extended to the multivariate case. Furthermore, using simulations, we examine some peculiarities of all these criteria.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10463-009-0233-5</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-3157 |
ispartof | Annals of the Institute of Statistical Mathematics, 2011-04, Vol.63 (2), p.387-403 |
issn | 0020-3157 1572-9052 |
language | eng |
recordid | cdi_proquest_miscellaneous_869807316 |
source | SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Criteria Economics Error analysis Errors Estimators Finance Insurance Management Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Polyethylenes Predictions Regression Regression analysis Risk Statistics Statistics for Business Studies Variables |
title | Prediction error criterion for selecting variables in a linear regression model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20error%20criterion%20for%20selecting%20variables%20in%20a%20linear%20regression%20model&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Fujikoshi,%20Yasunori&rft.date=2011-04-01&rft.volume=63&rft.issue=2&rft.spage=387&rft.epage=403&rft.pages=387-403&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-009-0233-5&rft_dat=%3Cproquest_cross%3E869807316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856175363&rft_id=info:pmid/&rfr_iscdi=true |