A simple mass-action model for the eukaryotic heat shock response and its mathematical validation
The heat shock response is a primordial defense mechanism against cell stress and protein misfolding. It proceeds with the minimum number of mechanisms that any regulatory network must include, a stress-induced activation and a feedback regulation, and can thus be regarded as the archetype for a cel...
Gespeichert in:
Veröffentlicht in: | Natural computing 2011-03, Vol.10 (1), p.595-612 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 612 |
---|---|
container_issue | 1 |
container_start_page | 595 |
container_title | Natural computing |
container_volume | 10 |
creator | Petre, Ion Mizera, Andrzej Hyder, Claire L. Meinander, Annika Mikhailov, Andrey Morimoto, Richard I. Sistonen, Lea Eriksson, John E. Back, Ralph-Johan |
description | The heat shock response is a primordial defense mechanism against cell stress and protein misfolding. It proceeds with the minimum number of mechanisms that any regulatory network must include, a stress-induced activation and a feedback regulation, and can thus be regarded as the archetype for a cellular regulatory process. We propose here a simple mechanistic model for the eukaryotic heat shock response, including its mathematical validation. Based on numerical predictions of the model and on its sensitivity analysis, we minimize the model by identifying the reactions with marginal contribution to the heat shock response. As the heat shock response is a very basic and conserved regulatory network, our analysis of the network provides a useful foundation for modeling strategies of more complex cellular processes. |
doi_str_mv | 10.1007/s11047-010-9216-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869799019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289099281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1019e74aef53f7d27ccd025274e9eda83a1ab5e86f7ddff861fe71bd6e0b13203</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG_Bi6doJv1Ie1wWv2DBi55DNp263W2bmmmF_femVBAEL5nAvO-T8ETRNYg7EELdE4BIFBcgeCEh48eTaAGpkrxQRXY63TPFVQ75eXRBtBdCQprCIjIrRnXbN8haQ8SNHWrXsdaV2LDKeTbskOF4MP7ohtqyHZqB0c7ZA_NIvesImelKVg8UACEcjtqahn2Zpi7NBLuMzirTEF79zGX0_vjwtn7mm9enl_Vqw22cqIGDgAJVYrBK40qVUllbCplKlWCBpcljA2abYp6FZVlVeQYVKtiWGYotxFLEy-h25vbefY5Ig25rstg0pkM3ks6zoKIIr4TkzZ_k3o2-C5_TeZolMhbJhIM5ZL0j8ljp3tdt8KBB6Em5npXroFxPyvUxdOTcoZDtPtD_gv8vfQMIc4W5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856423040</pqid></control><display><type>article</type><title>A simple mass-action model for the eukaryotic heat shock response and its mathematical validation</title><source>Springer Online Journals Complete</source><creator>Petre, Ion ; Mizera, Andrzej ; Hyder, Claire L. ; Meinander, Annika ; Mikhailov, Andrey ; Morimoto, Richard I. ; Sistonen, Lea ; Eriksson, John E. ; Back, Ralph-Johan</creator><creatorcontrib>Petre, Ion ; Mizera, Andrzej ; Hyder, Claire L. ; Meinander, Annika ; Mikhailov, Andrey ; Morimoto, Richard I. ; Sistonen, Lea ; Eriksson, John E. ; Back, Ralph-Johan</creatorcontrib><description>The heat shock response is a primordial defense mechanism against cell stress and protein misfolding. It proceeds with the minimum number of mechanisms that any regulatory network must include, a stress-induced activation and a feedback regulation, and can thus be regarded as the archetype for a cellular regulatory process. We propose here a simple mechanistic model for the eukaryotic heat shock response, including its mathematical validation. Based on numerical predictions of the model and on its sensitivity analysis, we minimize the model by identifying the reactions with marginal contribution to the heat shock response. As the heat shock response is a very basic and conserved regulatory network, our analysis of the network provides a useful foundation for modeling strategies of more complex cellular processes.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-010-9216-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Cellular ; Cellular communication ; Complex Systems ; Computational mathematics ; Computer Science ; Control ; Eukaryotes ; Evolutionary Biology ; Foundations ; Heat shock ; Heat shock proteins ; Mathematical models ; Numerical prediction ; Processor Architectures ; Protein folding ; Sensitivity analysis ; Strategy ; Theory of Computation</subject><ispartof>Natural computing, 2011-03, Vol.10 (1), p.595-612</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1019e74aef53f7d27ccd025274e9eda83a1ab5e86f7ddff861fe71bd6e0b13203</citedby><cites>FETCH-LOGICAL-c347t-1019e74aef53f7d27ccd025274e9eda83a1ab5e86f7ddff861fe71bd6e0b13203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11047-010-9216-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11047-010-9216-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Petre, Ion</creatorcontrib><creatorcontrib>Mizera, Andrzej</creatorcontrib><creatorcontrib>Hyder, Claire L.</creatorcontrib><creatorcontrib>Meinander, Annika</creatorcontrib><creatorcontrib>Mikhailov, Andrey</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Sistonen, Lea</creatorcontrib><creatorcontrib>Eriksson, John E.</creatorcontrib><creatorcontrib>Back, Ralph-Johan</creatorcontrib><title>A simple mass-action model for the eukaryotic heat shock response and its mathematical validation</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>The heat shock response is a primordial defense mechanism against cell stress and protein misfolding. It proceeds with the minimum number of mechanisms that any regulatory network must include, a stress-induced activation and a feedback regulation, and can thus be regarded as the archetype for a cellular regulatory process. We propose here a simple mechanistic model for the eukaryotic heat shock response, including its mathematical validation. Based on numerical predictions of the model and on its sensitivity analysis, we minimize the model by identifying the reactions with marginal contribution to the heat shock response. As the heat shock response is a very basic and conserved regulatory network, our analysis of the network provides a useful foundation for modeling strategies of more complex cellular processes.</description><subject>Artificial Intelligence</subject><subject>Cellular</subject><subject>Cellular communication</subject><subject>Complex Systems</subject><subject>Computational mathematics</subject><subject>Computer Science</subject><subject>Control</subject><subject>Eukaryotes</subject><subject>Evolutionary Biology</subject><subject>Foundations</subject><subject>Heat shock</subject><subject>Heat shock proteins</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Processor Architectures</subject><subject>Protein folding</subject><subject>Sensitivity analysis</subject><subject>Strategy</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhosouK7-AG_Bi6doJv1Ie1wWv2DBi55DNp263W2bmmmF_femVBAEL5nAvO-T8ETRNYg7EELdE4BIFBcgeCEh48eTaAGpkrxQRXY63TPFVQ75eXRBtBdCQprCIjIrRnXbN8haQ8SNHWrXsdaV2LDKeTbskOF4MP7ohtqyHZqB0c7ZA_NIvesImelKVg8UACEcjtqahn2Zpi7NBLuMzirTEF79zGX0_vjwtn7mm9enl_Vqw22cqIGDgAJVYrBK40qVUllbCplKlWCBpcljA2abYp6FZVlVeQYVKtiWGYotxFLEy-h25vbefY5Ig25rstg0pkM3ks6zoKIIr4TkzZ_k3o2-C5_TeZolMhbJhIM5ZL0j8ljp3tdt8KBB6Em5npXroFxPyvUxdOTcoZDtPtD_gv8vfQMIc4W5</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Petre, Ion</creator><creator>Mizera, Andrzej</creator><creator>Hyder, Claire L.</creator><creator>Meinander, Annika</creator><creator>Mikhailov, Andrey</creator><creator>Morimoto, Richard I.</creator><creator>Sistonen, Lea</creator><creator>Eriksson, John E.</creator><creator>Back, Ralph-Johan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20110301</creationdate><title>A simple mass-action model for the eukaryotic heat shock response and its mathematical validation</title><author>Petre, Ion ; Mizera, Andrzej ; Hyder, Claire L. ; Meinander, Annika ; Mikhailov, Andrey ; Morimoto, Richard I. ; Sistonen, Lea ; Eriksson, John E. ; Back, Ralph-Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1019e74aef53f7d27ccd025274e9eda83a1ab5e86f7ddff861fe71bd6e0b13203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial Intelligence</topic><topic>Cellular</topic><topic>Cellular communication</topic><topic>Complex Systems</topic><topic>Computational mathematics</topic><topic>Computer Science</topic><topic>Control</topic><topic>Eukaryotes</topic><topic>Evolutionary Biology</topic><topic>Foundations</topic><topic>Heat shock</topic><topic>Heat shock proteins</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Processor Architectures</topic><topic>Protein folding</topic><topic>Sensitivity analysis</topic><topic>Strategy</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petre, Ion</creatorcontrib><creatorcontrib>Mizera, Andrzej</creatorcontrib><creatorcontrib>Hyder, Claire L.</creatorcontrib><creatorcontrib>Meinander, Annika</creatorcontrib><creatorcontrib>Mikhailov, Andrey</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Sistonen, Lea</creatorcontrib><creatorcontrib>Eriksson, John E.</creatorcontrib><creatorcontrib>Back, Ralph-Johan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petre, Ion</au><au>Mizera, Andrzej</au><au>Hyder, Claire L.</au><au>Meinander, Annika</au><au>Mikhailov, Andrey</au><au>Morimoto, Richard I.</au><au>Sistonen, Lea</au><au>Eriksson, John E.</au><au>Back, Ralph-Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple mass-action model for the eukaryotic heat shock response and its mathematical validation</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>10</volume><issue>1</issue><spage>595</spage><epage>612</epage><pages>595-612</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>The heat shock response is a primordial defense mechanism against cell stress and protein misfolding. It proceeds with the minimum number of mechanisms that any regulatory network must include, a stress-induced activation and a feedback regulation, and can thus be regarded as the archetype for a cellular regulatory process. We propose here a simple mechanistic model for the eukaryotic heat shock response, including its mathematical validation. Based on numerical predictions of the model and on its sensitivity analysis, we minimize the model by identifying the reactions with marginal contribution to the heat shock response. As the heat shock response is a very basic and conserved regulatory network, our analysis of the network provides a useful foundation for modeling strategies of more complex cellular processes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-010-9216-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-7818 |
ispartof | Natural computing, 2011-03, Vol.10 (1), p.595-612 |
issn | 1567-7818 1572-9796 |
language | eng |
recordid | cdi_proquest_miscellaneous_869799019 |
source | Springer Online Journals Complete |
subjects | Artificial Intelligence Cellular Cellular communication Complex Systems Computational mathematics Computer Science Control Eukaryotes Evolutionary Biology Foundations Heat shock Heat shock proteins Mathematical models Numerical prediction Processor Architectures Protein folding Sensitivity analysis Strategy Theory of Computation |
title | A simple mass-action model for the eukaryotic heat shock response and its mathematical validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20mass-action%20model%20for%20the%20eukaryotic%20heat%20shock%20response%20and%20its%20mathematical%20validation&rft.jtitle=Natural%20computing&rft.au=Petre,%20Ion&rft.date=2011-03-01&rft.volume=10&rft.issue=1&rft.spage=595&rft.epage=612&rft.pages=595-612&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-010-9216-y&rft_dat=%3Cproquest_cross%3E2289099281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856423040&rft_id=info:pmid/&rfr_iscdi=true |