Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior

The SnO 2/CNFs heteroarchitectures are successfully fabricated by combining the electrospinning technique and the hydrothermal method showing high capacitive behavior as the electrode materials for supercapacitors. [Display omitted] ► Easy synthesis of SnO 2/CNFs heteroarchitectures. ► Controllable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2011-04, Vol.356 (2), p.706-712
Hauptverfasser: Mu, Jingbo, Chen, Bin, Guo, Zengcai, Zhang, Mingyi, Zhang, Zhenyi, Shao, Changlu, Liu, Yichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 2
container_start_page 706
container_title Journal of colloid and interface science
container_volume 356
creator Mu, Jingbo
Chen, Bin
Guo, Zengcai
Zhang, Mingyi
Zhang, Zhenyi
Shao, Changlu
Liu, Yichun
description The SnO 2/CNFs heteroarchitectures are successfully fabricated by combining the electrospinning technique and the hydrothermal method showing high capacitive behavior as the electrode materials for supercapacitors. [Display omitted] ► Easy synthesis of SnO 2/CNFs heteroarchitectures. ► Controllable SnO 2 nanoparticles on the surfaces of the CNFs. ► The SnO 2/CNFs heterostructures possess excellent capacitive performance. Tin oxide (SnO 2)/carbon nanofibers (CNFs) heterostructures were fabricated by combining the versatility of the electrospinning technique and template-free solvent–thermal process. The results revealed that the SnO 2 nanostructures were successfully grown on the primary electrospun carbon nanofibers substrates. And, the coverage density of SnO 2 nanoparticles coating on the surface of the CNFs could be controlled by simply adjusting the mass ratio of CNFs to SnCl 4·5H 2O in the precursor during the solvent–thermal process for the fabrication of SnO 2/CNFs heterostructures. The electrochemical performances of the SnO 2/CNFs heterostructures as the electrode materials for supercapacitors were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge measurement in 1 M H 2SO 4 solution. At different scan rates, all the samples with different coverage densities of SnO 2 showed excellent capacitance behavior. And, the sample CS2 (the mass ratio of CNFs to SnCl 4·5H 2O reached 1:7) exhibited a maximum specific capacitance of 187 F/g at a scan rate of 20 mV/s. Moreover, after 1000 cycles, the specific capacitance retention of this sample was over 95%. The high capacitive behavior could be ascribed to the low resistance of SnO 2/CNFs heterostructures and rapid transport of the electrolyte ions from bulk solution to the surface of SnO 2.
doi_str_mv 10.1016/j.jcis.2011.01.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869796922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979711000488</els_id><sourcerecordid>869796922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-e9557808057435cfc461e9971bf15d9ebad7e3a35212bc2ddd43796afa7212633</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotPCC7BA3qC2i0z9E8djxAaNKEWq6IKythz7hvEoYwc7GZVX6FPjMNMuka50Jes7R77nIPSOkiUltLnaLrfW5yUjlC5JGc5eoAUlSlSSEv4SLQhhtFJSyRN0mvOWFFAI9RqdMMoJ4Y1YoMd7H3B88A7wxY9wh9klDibEwaTR2x7yFfRgxxTzMAVsTWpj-Ad0voWU8cX6-3W-xBsYoTBjmuw4Jcgf8TqGoup7cLgzbfLWjL5ITXB4439titVgrB_9HnALG7P3Mb1BrzrTZ3h73Gfo5_WX-_VNdXv39dv6821layrHCpQQckVWRMiaC9vZuqGglKRtR4VT0BongRsuGGWtZc65mkvVmM7I8tJwfobOD75Dir8nyKPe-Wyh702AOGW9akpkjWKskOxA2nJcTtDpIfmdSX80JXquQG_1XIGeK9CkDJ9F74_2U7sD9yx5yrwAH46Aydb0XTJh9njmasLqcl3hPh04KGHsPSSdrYdgwflUOtEu-v_94y92nKYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869796922</pqid></control><display><type>article</type><title>Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior</title><source>Elsevier ScienceDirect Journals</source><creator>Mu, Jingbo ; Chen, Bin ; Guo, Zengcai ; Zhang, Mingyi ; Zhang, Zhenyi ; Shao, Changlu ; Liu, Yichun</creator><creatorcontrib>Mu, Jingbo ; Chen, Bin ; Guo, Zengcai ; Zhang, Mingyi ; Zhang, Zhenyi ; Shao, Changlu ; Liu, Yichun</creatorcontrib><description>The SnO 2/CNFs heteroarchitectures are successfully fabricated by combining the electrospinning technique and the hydrothermal method showing high capacitive behavior as the electrode materials for supercapacitors. [Display omitted] ► Easy synthesis of SnO 2/CNFs heteroarchitectures. ► Controllable SnO 2 nanoparticles on the surfaces of the CNFs. ► The SnO 2/CNFs heterostructures possess excellent capacitive performance. Tin oxide (SnO 2)/carbon nanofibers (CNFs) heterostructures were fabricated by combining the versatility of the electrospinning technique and template-free solvent–thermal process. The results revealed that the SnO 2 nanostructures were successfully grown on the primary electrospun carbon nanofibers substrates. And, the coverage density of SnO 2 nanoparticles coating on the surface of the CNFs could be controlled by simply adjusting the mass ratio of CNFs to SnCl 4·5H 2O in the precursor during the solvent–thermal process for the fabrication of SnO 2/CNFs heterostructures. The electrochemical performances of the SnO 2/CNFs heterostructures as the electrode materials for supercapacitors were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge measurement in 1 M H 2SO 4 solution. At different scan rates, all the samples with different coverage densities of SnO 2 showed excellent capacitance behavior. And, the sample CS2 (the mass ratio of CNFs to SnCl 4·5H 2O reached 1:7) exhibited a maximum specific capacitance of 187 F/g at a scan rate of 20 mV/s. Moreover, after 1000 cycles, the specific capacitance retention of this sample was over 95%. The high capacitive behavior could be ascribed to the low resistance of SnO 2/CNFs heterostructures and rapid transport of the electrolyte ions from bulk solution to the surface of SnO 2.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2011.01.032</identifier><identifier>PMID: 21300365</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Capacitance ; Carbon fibers ; Carbon nanofibers ; Chemistry ; Colloidal state and disperse state ; Density ; Electrochemical performance ; Electrochemistry ; Electrospinning ; Exact sciences and technology ; General and physical chemistry ; Heterostructures ; Nanofibers ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Tin dioxide ; Tin oxide ; Tin oxides</subject><ispartof>Journal of colloid and interface science, 2011-04, Vol.356 (2), p.706-712</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-e9557808057435cfc461e9971bf15d9ebad7e3a35212bc2ddd43796afa7212633</citedby><cites>FETCH-LOGICAL-c417t-e9557808057435cfc461e9971bf15d9ebad7e3a35212bc2ddd43796afa7212633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979711000488$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24024805$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21300365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Jingbo</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Guo, Zengcai</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><creatorcontrib>Shao, Changlu</creatorcontrib><creatorcontrib>Liu, Yichun</creatorcontrib><title>Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The SnO 2/CNFs heteroarchitectures are successfully fabricated by combining the electrospinning technique and the hydrothermal method showing high capacitive behavior as the electrode materials for supercapacitors. [Display omitted] ► Easy synthesis of SnO 2/CNFs heteroarchitectures. ► Controllable SnO 2 nanoparticles on the surfaces of the CNFs. ► The SnO 2/CNFs heterostructures possess excellent capacitive performance. Tin oxide (SnO 2)/carbon nanofibers (CNFs) heterostructures were fabricated by combining the versatility of the electrospinning technique and template-free solvent–thermal process. The results revealed that the SnO 2 nanostructures were successfully grown on the primary electrospun carbon nanofibers substrates. And, the coverage density of SnO 2 nanoparticles coating on the surface of the CNFs could be controlled by simply adjusting the mass ratio of CNFs to SnCl 4·5H 2O in the precursor during the solvent–thermal process for the fabrication of SnO 2/CNFs heterostructures. The electrochemical performances of the SnO 2/CNFs heterostructures as the electrode materials for supercapacitors were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge measurement in 1 M H 2SO 4 solution. At different scan rates, all the samples with different coverage densities of SnO 2 showed excellent capacitance behavior. And, the sample CS2 (the mass ratio of CNFs to SnCl 4·5H 2O reached 1:7) exhibited a maximum specific capacitance of 187 F/g at a scan rate of 20 mV/s. Moreover, after 1000 cycles, the specific capacitance retention of this sample was over 95%. The high capacitive behavior could be ascribed to the low resistance of SnO 2/CNFs heterostructures and rapid transport of the electrolyte ions from bulk solution to the surface of SnO 2.</description><subject>Capacitance</subject><subject>Carbon fibers</subject><subject>Carbon nanofibers</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Density</subject><subject>Electrochemical performance</subject><subject>Electrochemistry</subject><subject>Electrospinning</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heterostructures</subject><subject>Nanofibers</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Tin dioxide</subject><subject>Tin oxide</subject><subject>Tin oxides</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EotPCC7BA3qC2i0z9E8djxAaNKEWq6IKythz7hvEoYwc7GZVX6FPjMNMuka50Jes7R77nIPSOkiUltLnaLrfW5yUjlC5JGc5eoAUlSlSSEv4SLQhhtFJSyRN0mvOWFFAI9RqdMMoJ4Y1YoMd7H3B88A7wxY9wh9klDibEwaTR2x7yFfRgxxTzMAVsTWpj-Ad0voWU8cX6-3W-xBsYoTBjmuw4Jcgf8TqGoup7cLgzbfLWjL5ITXB4439titVgrB_9HnALG7P3Mb1BrzrTZ3h73Gfo5_WX-_VNdXv39dv6821layrHCpQQckVWRMiaC9vZuqGglKRtR4VT0BongRsuGGWtZc65mkvVmM7I8tJwfobOD75Dir8nyKPe-Wyh702AOGW9akpkjWKskOxA2nJcTtDpIfmdSX80JXquQG_1XIGeK9CkDJ9F74_2U7sD9yx5yrwAH46Aydb0XTJh9njmasLqcl3hPh04KGHsPSSdrYdgwflUOtEu-v_94y92nKYG</recordid><startdate>20110415</startdate><enddate>20110415</enddate><creator>Mu, Jingbo</creator><creator>Chen, Bin</creator><creator>Guo, Zengcai</creator><creator>Zhang, Mingyi</creator><creator>Zhang, Zhenyi</creator><creator>Shao, Changlu</creator><creator>Liu, Yichun</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110415</creationdate><title>Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior</title><author>Mu, Jingbo ; Chen, Bin ; Guo, Zengcai ; Zhang, Mingyi ; Zhang, Zhenyi ; Shao, Changlu ; Liu, Yichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-e9557808057435cfc461e9971bf15d9ebad7e3a35212bc2ddd43796afa7212633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Capacitance</topic><topic>Carbon fibers</topic><topic>Carbon nanofibers</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Density</topic><topic>Electrochemical performance</topic><topic>Electrochemistry</topic><topic>Electrospinning</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heterostructures</topic><topic>Nanofibers</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Tin dioxide</topic><topic>Tin oxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Jingbo</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Guo, Zengcai</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><creatorcontrib>Shao, Changlu</creatorcontrib><creatorcontrib>Liu, Yichun</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Jingbo</au><au>Chen, Bin</au><au>Guo, Zengcai</au><au>Zhang, Mingyi</au><au>Zhang, Zhenyi</au><au>Shao, Changlu</au><au>Liu, Yichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2011-04-15</date><risdate>2011</risdate><volume>356</volume><issue>2</issue><spage>706</spage><epage>712</epage><pages>706-712</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>The SnO 2/CNFs heteroarchitectures are successfully fabricated by combining the electrospinning technique and the hydrothermal method showing high capacitive behavior as the electrode materials for supercapacitors. [Display omitted] ► Easy synthesis of SnO 2/CNFs heteroarchitectures. ► Controllable SnO 2 nanoparticles on the surfaces of the CNFs. ► The SnO 2/CNFs heterostructures possess excellent capacitive performance. Tin oxide (SnO 2)/carbon nanofibers (CNFs) heterostructures were fabricated by combining the versatility of the electrospinning technique and template-free solvent–thermal process. The results revealed that the SnO 2 nanostructures were successfully grown on the primary electrospun carbon nanofibers substrates. And, the coverage density of SnO 2 nanoparticles coating on the surface of the CNFs could be controlled by simply adjusting the mass ratio of CNFs to SnCl 4·5H 2O in the precursor during the solvent–thermal process for the fabrication of SnO 2/CNFs heterostructures. The electrochemical performances of the SnO 2/CNFs heterostructures as the electrode materials for supercapacitors were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge measurement in 1 M H 2SO 4 solution. At different scan rates, all the samples with different coverage densities of SnO 2 showed excellent capacitance behavior. And, the sample CS2 (the mass ratio of CNFs to SnCl 4·5H 2O reached 1:7) exhibited a maximum specific capacitance of 187 F/g at a scan rate of 20 mV/s. Moreover, after 1000 cycles, the specific capacitance retention of this sample was over 95%. The high capacitive behavior could be ascribed to the low resistance of SnO 2/CNFs heterostructures and rapid transport of the electrolyte ions from bulk solution to the surface of SnO 2.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>21300365</pmid><doi>10.1016/j.jcis.2011.01.032</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2011-04, Vol.356 (2), p.706-712
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_869796922
source Elsevier ScienceDirect Journals
subjects Capacitance
Carbon fibers
Carbon nanofibers
Chemistry
Colloidal state and disperse state
Density
Electrochemical performance
Electrochemistry
Electrospinning
Exact sciences and technology
General and physical chemistry
Heterostructures
Nanofibers
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Tin dioxide
Tin oxide
Tin oxides
title Tin oxide (SnO 2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20oxide%20(SnO%202)%20nanoparticles/electrospun%20carbon%20nanofibers%20(CNFs)%20heterostructures:%20Controlled%20fabrication%20and%20high%20capacitive%20behavior&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Mu,%20Jingbo&rft.date=2011-04-15&rft.volume=356&rft.issue=2&rft.spage=706&rft.epage=712&rft.pages=706-712&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2011.01.032&rft_dat=%3Cproquest_cross%3E869796922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869796922&rft_id=info:pmid/21300365&rft_els_id=S0021979711000488&rfr_iscdi=true