Neutronic calculations of a thorium-based fusion–fission hybrid reactor blanket

Fusion–fission hybrid reactor has advantages of production of nuclear fuel, transmutation of long-life nuclear waste, and having inherent safety. Considering the fast development of nuclear power industry and the abundant thorium resources in China, the concept of a thorium-based breeding blanket fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2010-12, Vol.85 (10), p.2227-2231
Hauptverfasser: Ma, X.B., Chen, Y.X., Wang, Y., Zhang, P.Z., Cao, B., Lu, D.G., Cheng, H.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2231
container_issue 10
container_start_page 2227
container_title Fusion engineering and design
container_volume 85
creator Ma, X.B.
Chen, Y.X.
Wang, Y.
Zhang, P.Z.
Cao, B.
Lu, D.G.
Cheng, H.P.
description Fusion–fission hybrid reactor has advantages of production of nuclear fuel, transmutation of long-life nuclear waste, and having inherent safety. Considering the fast development of nuclear power industry and the abundant thorium resources in China, the concept of a thorium-based breeding blanket for fuel production is proposed. The blanket using ThN or ThO 2 dispersed in graphite or BeO is investigated under a first neutron wall loading of 0.57 MW/cm 2 as ITER. The design helium cooled pebble bed design is employed according to the experience in the fusion reactor field. Preliminary neutronic calculations are performed using the one-dimensional transport and burnup calculation code BISONC and the Monte Carlo transport code MCNP. The behavior of the neutronic potential is observed for 960 days. The cumulative fissile fuel enrichment values varied between 6.88% and 8.56% depending on the fuel types. The tritium breeding ratio is greater than 1.05 for all investigated fuel types and the hybrid reactor is self-sufficient in the tritium required for the (DT) fusion driver in those modes during the operation period. The blanket energy multiplication factor M, varies between 13.66 and 15.85 depending on the fuel types at the end of the operation period. In addition, the effect of 233Pa on the 233U production and k eff are also discussed.
doi_str_mv 10.1016/j.fusengdes.2010.08.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869796894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379610004035</els_id><sourcerecordid>869796894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-84ce078a9c3d8c31f8caf84e79ae51a1f4cc1eddd0d63f76b77983437769d1e23</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxoMoWKvP4F7E09Zks26SYxH_QVEEPYd0MrGp201NdoXefAff0CcxpeJVGMiQfF--mR8hp4xOGGXNxXLihoTdq8U0qWi-pXJC63qPjJgUvBRMNftkRFVFSy5Uc0iOUlpSykSuEXl6wKGPofNQgGlhaE3vQ5eK4ApT9IsQ_bAq5yahLXJMfvr-_HI-bbtisZlHb4uIBvoQi3lrujfsj8mBM23Ck99zTF5urp-v7srZ4-391XRWAheiL2UNSIU0CriVwJmTYJysUSiDl8wwVwMwtNZS23AnmrkQSvI6extlGVZ8TM53_65jeB8w9XrlE2Cbp8AwJC0bldeVqs5KsVNCDClFdHod_crEjWZUbxnqpf5jqLcMNZU6M8zOs98MkzIeF00HPv3ZKy7yRBXLuulOh3nhD49RJ_DYAVofEXptg_836wfCto6q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869796894</pqid></control><display><type>article</type><title>Neutronic calculations of a thorium-based fusion–fission hybrid reactor blanket</title><source>Elsevier ScienceDirect Journals</source><creator>Ma, X.B. ; Chen, Y.X. ; Wang, Y. ; Zhang, P.Z. ; Cao, B. ; Lu, D.G. ; Cheng, H.P.</creator><creatorcontrib>Ma, X.B. ; Chen, Y.X. ; Wang, Y. ; Zhang, P.Z. ; Cao, B. ; Lu, D.G. ; Cheng, H.P.</creatorcontrib><description>Fusion–fission hybrid reactor has advantages of production of nuclear fuel, transmutation of long-life nuclear waste, and having inherent safety. Considering the fast development of nuclear power industry and the abundant thorium resources in China, the concept of a thorium-based breeding blanket for fuel production is proposed. The blanket using ThN or ThO 2 dispersed in graphite or BeO is investigated under a first neutron wall loading of 0.57 MW/cm 2 as ITER. The design helium cooled pebble bed design is employed according to the experience in the fusion reactor field. Preliminary neutronic calculations are performed using the one-dimensional transport and burnup calculation code BISONC and the Monte Carlo transport code MCNP. The behavior of the neutronic potential is observed for 960 days. The cumulative fissile fuel enrichment values varied between 6.88% and 8.56% depending on the fuel types. The tritium breeding ratio is greater than 1.05 for all investigated fuel types and the hybrid reactor is self-sufficient in the tritium required for the (DT) fusion driver in those modes during the operation period. The blanket energy multiplication factor M, varies between 13.66 and 15.85 depending on the fuel types at the end of the operation period. In addition, the effect of 233Pa on the 233U production and k eff are also discussed.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2010.08.044</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>233Pa effect ; Applied sciences ; Blanket ; Blanketing ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Fusion-fission hybrid reactors ; Hybrid reactor ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical analysis ; Monte Carlo methods ; Nuclear engineering ; Nuclear fuels ; Nuclear reactor components ; Preparation and processing of nuclear fuels ; Thorium ; Transport ; Tritium</subject><ispartof>Fusion engineering and design, 2010-12, Vol.85 (10), p.2227-2231</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-84ce078a9c3d8c31f8caf84e79ae51a1f4cc1eddd0d63f76b77983437769d1e23</citedby><cites>FETCH-LOGICAL-c377t-84ce078a9c3d8c31f8caf84e79ae51a1f4cc1eddd0d63f76b77983437769d1e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379610004035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23911,23912,25120,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23734321$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, X.B.</creatorcontrib><creatorcontrib>Chen, Y.X.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Zhang, P.Z.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Lu, D.G.</creatorcontrib><creatorcontrib>Cheng, H.P.</creatorcontrib><title>Neutronic calculations of a thorium-based fusion–fission hybrid reactor blanket</title><title>Fusion engineering and design</title><description>Fusion–fission hybrid reactor has advantages of production of nuclear fuel, transmutation of long-life nuclear waste, and having inherent safety. Considering the fast development of nuclear power industry and the abundant thorium resources in China, the concept of a thorium-based breeding blanket for fuel production is proposed. The blanket using ThN or ThO 2 dispersed in graphite or BeO is investigated under a first neutron wall loading of 0.57 MW/cm 2 as ITER. The design helium cooled pebble bed design is employed according to the experience in the fusion reactor field. Preliminary neutronic calculations are performed using the one-dimensional transport and burnup calculation code BISONC and the Monte Carlo transport code MCNP. The behavior of the neutronic potential is observed for 960 days. The cumulative fissile fuel enrichment values varied between 6.88% and 8.56% depending on the fuel types. The tritium breeding ratio is greater than 1.05 for all investigated fuel types and the hybrid reactor is self-sufficient in the tritium required for the (DT) fusion driver in those modes during the operation period. The blanket energy multiplication factor M, varies between 13.66 and 15.85 depending on the fuel types at the end of the operation period. In addition, the effect of 233Pa on the 233U production and k eff are also discussed.</description><subject>233Pa effect</subject><subject>Applied sciences</subject><subject>Blanket</subject><subject>Blanketing</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Fusion-fission hybrid reactors</subject><subject>Hybrid reactor</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Nuclear engineering</subject><subject>Nuclear fuels</subject><subject>Nuclear reactor components</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Thorium</subject><subject>Transport</subject><subject>Tritium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxoMoWKvP4F7E09Zks26SYxH_QVEEPYd0MrGp201NdoXefAff0CcxpeJVGMiQfF--mR8hp4xOGGXNxXLihoTdq8U0qWi-pXJC63qPjJgUvBRMNftkRFVFSy5Uc0iOUlpSykSuEXl6wKGPofNQgGlhaE3vQ5eK4ApT9IsQ_bAq5yahLXJMfvr-_HI-bbtisZlHb4uIBvoQi3lrujfsj8mBM23Ck99zTF5urp-v7srZ4-391XRWAheiL2UNSIU0CriVwJmTYJysUSiDl8wwVwMwtNZS23AnmrkQSvI6extlGVZ8TM53_65jeB8w9XrlE2Cbp8AwJC0bldeVqs5KsVNCDClFdHod_crEjWZUbxnqpf5jqLcMNZU6M8zOs98MkzIeF00HPv3ZKy7yRBXLuulOh3nhD49RJ_DYAVofEXptg_836wfCto6q</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Ma, X.B.</creator><creator>Chen, Y.X.</creator><creator>Wang, Y.</creator><creator>Zhang, P.Z.</creator><creator>Cao, B.</creator><creator>Lu, D.G.</creator><creator>Cheng, H.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Neutronic calculations of a thorium-based fusion–fission hybrid reactor blanket</title><author>Ma, X.B. ; Chen, Y.X. ; Wang, Y. ; Zhang, P.Z. ; Cao, B. ; Lu, D.G. ; Cheng, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-84ce078a9c3d8c31f8caf84e79ae51a1f4cc1eddd0d63f76b77983437769d1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>233Pa effect</topic><topic>Applied sciences</topic><topic>Blanket</topic><topic>Blanketing</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Fusion-fission hybrid reactors</topic><topic>Hybrid reactor</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Nuclear engineering</topic><topic>Nuclear fuels</topic><topic>Nuclear reactor components</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Thorium</topic><topic>Transport</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, X.B.</creatorcontrib><creatorcontrib>Chen, Y.X.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Zhang, P.Z.</creatorcontrib><creatorcontrib>Cao, B.</creatorcontrib><creatorcontrib>Lu, D.G.</creatorcontrib><creatorcontrib>Cheng, H.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, X.B.</au><au>Chen, Y.X.</au><au>Wang, Y.</au><au>Zhang, P.Z.</au><au>Cao, B.</au><au>Lu, D.G.</au><au>Cheng, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutronic calculations of a thorium-based fusion–fission hybrid reactor blanket</atitle><jtitle>Fusion engineering and design</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>85</volume><issue>10</issue><spage>2227</spage><epage>2231</epage><pages>2227-2231</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Fusion–fission hybrid reactor has advantages of production of nuclear fuel, transmutation of long-life nuclear waste, and having inherent safety. Considering the fast development of nuclear power industry and the abundant thorium resources in China, the concept of a thorium-based breeding blanket for fuel production is proposed. The blanket using ThN or ThO 2 dispersed in graphite or BeO is investigated under a first neutron wall loading of 0.57 MW/cm 2 as ITER. The design helium cooled pebble bed design is employed according to the experience in the fusion reactor field. Preliminary neutronic calculations are performed using the one-dimensional transport and burnup calculation code BISONC and the Monte Carlo transport code MCNP. The behavior of the neutronic potential is observed for 960 days. The cumulative fissile fuel enrichment values varied between 6.88% and 8.56% depending on the fuel types. The tritium breeding ratio is greater than 1.05 for all investigated fuel types and the hybrid reactor is self-sufficient in the tritium required for the (DT) fusion driver in those modes during the operation period. The blanket energy multiplication factor M, varies between 13.66 and 15.85 depending on the fuel types at the end of the operation period. In addition, the effect of 233Pa on the 233U production and k eff are also discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2010.08.044</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2010-12, Vol.85 (10), p.2227-2231
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_869796894
source Elsevier ScienceDirect Journals
subjects 233Pa effect
Applied sciences
Blanket
Blanketing
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Fusion-fission hybrid reactors
Hybrid reactor
Installations for energy generation and conversion: thermal and electrical energy
Mathematical analysis
Monte Carlo methods
Nuclear engineering
Nuclear fuels
Nuclear reactor components
Preparation and processing of nuclear fuels
Thorium
Transport
Tritium
title Neutronic calculations of a thorium-based fusion–fission hybrid reactor blanket
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutronic%20calculations%20of%20a%20thorium-based%20fusion%E2%80%93fission%20hybrid%20reactor%20blanket&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Ma,%20X.B.&rft.date=2010-12-01&rft.volume=85&rft.issue=10&rft.spage=2227&rft.epage=2231&rft.pages=2227-2231&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2010.08.044&rft_dat=%3Cproquest_cross%3E869796894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869796894&rft_id=info:pmid/&rft_els_id=S0920379610004035&rfr_iscdi=true