Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor
Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor ( M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and mai...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2010-12, Vol.85 (10), p.2115-2119 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2119 |
---|---|
container_issue | 10 |
container_start_page | 2115 |
container_title | Fusion engineering and design |
container_volume | 85 |
creator | Jiang, Jieqiong Wang, Minghuang Chen, Zhong Qiu, Yuefeng Liu, Jinchao Bai, Yunqing Chen, Hongli Hu, Yanglin |
description | Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (
M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1
GWe with self-sustaining tritium, i.e. the
M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate
M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33
000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication. |
doi_str_mv | 10.1016/j.fusengdes.2010.08.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869795864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379610003613</els_id><sourcerecordid>869795864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoWhA5Z2e4bpUuzkVLJsyz4GQbcWCNpLdxZkiuqUulYn2h1y2zvsDfckVZAg1wIESBAfyZ8_Y1-lWEohm6vt0s-E46NDWpYid0W7FFJ9YAvZalVo2TVnbCG6UhRKd80ndk60FULqHAsGdzhPKY4BiNvRDjsKxKPnf-yEqYAYB3QcR0yPO_6SopthCnHk_WDHJ5y4j4lbngXk5v-__3ygfcV_7foUHE9oYYrpM_vo7UD45Zgv2M_v1w_rm2Jz_-N2vdoUoLSeikZ0HfQ1AKIV2rseq6brsaysauuyrGolEQCEhNJK7zIBde37tnbYqEo5dcG-HfZmob9npMk8BwIcslaMM5m26XRXt02VSX0gIUWihN68pPBs085IYfaumq05uWr2rhrRmuxqnrw83rAEdvDJjhDoNF4qnaUIkbnVgcP88GvAZAgCjoAuJITJuBjevfUGM4OWIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869795864</pqid></control><display><type>article</type><title>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Jieqiong ; Wang, Minghuang ; Chen, Zhong ; Qiu, Yuefeng ; Liu, Jinchao ; Bai, Yunqing ; Chen, Hongli ; Hu, Yanglin</creator><creatorcontrib>Jiang, Jieqiong ; Wang, Minghuang ; Chen, Zhong ; Qiu, Yuefeng ; Liu, Jinchao ; Bai, Yunqing ; Chen, Hongli ; Hu, Yanglin</creatorcontrib><description>Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (
M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1
GWe with self-sustaining tritium, i.e. the
M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate
M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33
000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2010.08.013</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Blanket ; Blanketing ; Controled nuclear fusion plants ; Depletion ; Energy ; Energy multiplication ; Energy production ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Fusion ; Hybrid reactor ; Installations for energy generation and conversion: thermal and electrical energy ; Libraries ; Mathematical analysis ; Multiplication ; Neutronics ; Nuclear fuels ; Nuclear waste ; Preparation and processing of nuclear fuels ; Pressurized water reactors ; Tritium ; Uranium</subject><ispartof>Fusion engineering and design, 2010-12, Vol.85 (10), p.2115-2119</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</citedby><cites>FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379610003613$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23734300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jieqiong</creatorcontrib><creatorcontrib>Wang, Minghuang</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Qiu, Yuefeng</creatorcontrib><creatorcontrib>Liu, Jinchao</creatorcontrib><creatorcontrib>Bai, Yunqing</creatorcontrib><creatorcontrib>Chen, Hongli</creatorcontrib><creatorcontrib>Hu, Yanglin</creatorcontrib><title>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</title><title>Fusion engineering and design</title><description>Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (
M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1
GWe with self-sustaining tritium, i.e. the
M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate
M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33
000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.</description><subject>Applied sciences</subject><subject>Blanket</subject><subject>Blanketing</subject><subject>Controled nuclear fusion plants</subject><subject>Depletion</subject><subject>Energy</subject><subject>Energy multiplication</subject><subject>Energy production</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Fusion</subject><subject>Hybrid reactor</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Libraries</subject><subject>Mathematical analysis</subject><subject>Multiplication</subject><subject>Neutronics</subject><subject>Nuclear fuels</subject><subject>Nuclear waste</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Pressurized water reactors</subject><subject>Tritium</subject><subject>Uranium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoWhA5Z2e4bpUuzkVLJsyz4GQbcWCNpLdxZkiuqUulYn2h1y2zvsDfckVZAg1wIESBAfyZ8_Y1-lWEohm6vt0s-E46NDWpYid0W7FFJ9YAvZalVo2TVnbCG6UhRKd80ndk60FULqHAsGdzhPKY4BiNvRDjsKxKPnf-yEqYAYB3QcR0yPO_6SopthCnHk_WDHJ5y4j4lbngXk5v-__3ygfcV_7foUHE9oYYrpM_vo7UD45Zgv2M_v1w_rm2Jz_-N2vdoUoLSeikZ0HfQ1AKIV2rseq6brsaysauuyrGolEQCEhNJK7zIBde37tnbYqEo5dcG-HfZmob9npMk8BwIcslaMM5m26XRXt02VSX0gIUWihN68pPBs085IYfaumq05uWr2rhrRmuxqnrw83rAEdvDJjhDoNF4qnaUIkbnVgcP88GvAZAgCjoAuJITJuBjevfUGM4OWIg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Jiang, Jieqiong</creator><creator>Wang, Minghuang</creator><creator>Chen, Zhong</creator><creator>Qiu, Yuefeng</creator><creator>Liu, Jinchao</creator><creator>Bai, Yunqing</creator><creator>Chen, Hongli</creator><creator>Hu, Yanglin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</title><author>Jiang, Jieqiong ; Wang, Minghuang ; Chen, Zhong ; Qiu, Yuefeng ; Liu, Jinchao ; Bai, Yunqing ; Chen, Hongli ; Hu, Yanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Blanket</topic><topic>Blanketing</topic><topic>Controled nuclear fusion plants</topic><topic>Depletion</topic><topic>Energy</topic><topic>Energy multiplication</topic><topic>Energy production</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Fusion</topic><topic>Hybrid reactor</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Libraries</topic><topic>Mathematical analysis</topic><topic>Multiplication</topic><topic>Neutronics</topic><topic>Nuclear fuels</topic><topic>Nuclear waste</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Pressurized water reactors</topic><topic>Tritium</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jieqiong</creatorcontrib><creatorcontrib>Wang, Minghuang</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Qiu, Yuefeng</creatorcontrib><creatorcontrib>Liu, Jinchao</creatorcontrib><creatorcontrib>Bai, Yunqing</creatorcontrib><creatorcontrib>Chen, Hongli</creatorcontrib><creatorcontrib>Hu, Yanglin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jieqiong</au><au>Wang, Minghuang</au><au>Chen, Zhong</au><au>Qiu, Yuefeng</au><au>Liu, Jinchao</au><au>Bai, Yunqing</au><au>Chen, Hongli</au><au>Hu, Yanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</atitle><jtitle>Fusion engineering and design</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>85</volume><issue>10</issue><spage>2115</spage><epage>2119</epage><pages>2115-2119</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (
M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1
GWe with self-sustaining tritium, i.e. the
M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate
M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33
000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2010.08.013</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2010-12, Vol.85 (10), p.2115-2119 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_miscellaneous_869795864 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Blanket Blanketing Controled nuclear fusion plants Depletion Energy Energy multiplication Energy production Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Fusion Hybrid reactor Installations for energy generation and conversion: thermal and electrical energy Libraries Mathematical analysis Multiplication Neutronics Nuclear fuels Nuclear waste Preparation and processing of nuclear fuels Pressurized water reactors Tritium Uranium |
title | Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutronics%20analysis%20of%20water-cooled%20energy%20production%20blanket%20for%20a%20fusion%E2%80%93fission%20hybrid%20reactor&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Jiang,%20Jieqiong&rft.date=2010-12-01&rft.volume=85&rft.issue=10&rft.spage=2115&rft.epage=2119&rft.pages=2115-2119&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2010.08.013&rft_dat=%3Cproquest_cross%3E869795864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869795864&rft_id=info:pmid/&rft_els_id=S0920379610003613&rfr_iscdi=true |