Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor

Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor ( M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and mai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2010-12, Vol.85 (10), p.2115-2119
Hauptverfasser: Jiang, Jieqiong, Wang, Minghuang, Chen, Zhong, Qiu, Yuefeng, Liu, Jinchao, Bai, Yunqing, Chen, Hongli, Hu, Yanglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2119
container_issue 10
container_start_page 2115
container_title Fusion engineering and design
container_volume 85
creator Jiang, Jieqiong
Wang, Minghuang
Chen, Zhong
Qiu, Yuefeng
Liu, Jinchao
Bai, Yunqing
Chen, Hongli
Hu, Yanglin
description Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor ( M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.
doi_str_mv 10.1016/j.fusengdes.2010.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869795864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379610003613</els_id><sourcerecordid>869795864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoWhA5Z2e4bpUuzkVLJsyz4GQbcWCNpLdxZkiuqUulYn2h1y2zvsDfckVZAg1wIESBAfyZ8_Y1-lWEohm6vt0s-E46NDWpYid0W7FFJ9YAvZalVo2TVnbCG6UhRKd80ndk60FULqHAsGdzhPKY4BiNvRDjsKxKPnf-yEqYAYB3QcR0yPO_6SopthCnHk_WDHJ5y4j4lbngXk5v-__3ygfcV_7foUHE9oYYrpM_vo7UD45Zgv2M_v1w_rm2Jz_-N2vdoUoLSeikZ0HfQ1AKIV2rseq6brsaysauuyrGolEQCEhNJK7zIBde37tnbYqEo5dcG-HfZmob9npMk8BwIcslaMM5m26XRXt02VSX0gIUWihN68pPBs085IYfaumq05uWr2rhrRmuxqnrw83rAEdvDJjhDoNF4qnaUIkbnVgcP88GvAZAgCjoAuJITJuBjevfUGM4OWIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869795864</pqid></control><display><type>article</type><title>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Jieqiong ; Wang, Minghuang ; Chen, Zhong ; Qiu, Yuefeng ; Liu, Jinchao ; Bai, Yunqing ; Chen, Hongli ; Hu, Yanglin</creator><creatorcontrib>Jiang, Jieqiong ; Wang, Minghuang ; Chen, Zhong ; Qiu, Yuefeng ; Liu, Jinchao ; Bai, Yunqing ; Chen, Hongli ; Hu, Yanglin</creatorcontrib><description>Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor ( M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2010.08.013</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Blanket ; Blanketing ; Controled nuclear fusion plants ; Depletion ; Energy ; Energy multiplication ; Energy production ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Fusion ; Hybrid reactor ; Installations for energy generation and conversion: thermal and electrical energy ; Libraries ; Mathematical analysis ; Multiplication ; Neutronics ; Nuclear fuels ; Nuclear waste ; Preparation and processing of nuclear fuels ; Pressurized water reactors ; Tritium ; Uranium</subject><ispartof>Fusion engineering and design, 2010-12, Vol.85 (10), p.2115-2119</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</citedby><cites>FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379610003613$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23734300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jieqiong</creatorcontrib><creatorcontrib>Wang, Minghuang</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Qiu, Yuefeng</creatorcontrib><creatorcontrib>Liu, Jinchao</creatorcontrib><creatorcontrib>Bai, Yunqing</creatorcontrib><creatorcontrib>Chen, Hongli</creatorcontrib><creatorcontrib>Hu, Yanglin</creatorcontrib><title>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</title><title>Fusion engineering and design</title><description>Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor ( M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.</description><subject>Applied sciences</subject><subject>Blanket</subject><subject>Blanketing</subject><subject>Controled nuclear fusion plants</subject><subject>Depletion</subject><subject>Energy</subject><subject>Energy multiplication</subject><subject>Energy production</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Fusion</subject><subject>Hybrid reactor</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Libraries</subject><subject>Mathematical analysis</subject><subject>Multiplication</subject><subject>Neutronics</subject><subject>Nuclear fuels</subject><subject>Nuclear waste</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Pressurized water reactors</subject><subject>Tritium</subject><subject>Uranium</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoWhA5Z2e4bpUuzkVLJsyz4GQbcWCNpLdxZkiuqUulYn2h1y2zvsDfckVZAg1wIESBAfyZ8_Y1-lWEohm6vt0s-E46NDWpYid0W7FFJ9YAvZalVo2TVnbCG6UhRKd80ndk60FULqHAsGdzhPKY4BiNvRDjsKxKPnf-yEqYAYB3QcR0yPO_6SopthCnHk_WDHJ5y4j4lbngXk5v-__3ygfcV_7foUHE9oYYrpM_vo7UD45Zgv2M_v1w_rm2Jz_-N2vdoUoLSeikZ0HfQ1AKIV2rseq6brsaysauuyrGolEQCEhNJK7zIBde37tnbYqEo5dcG-HfZmob9npMk8BwIcslaMM5m26XRXt02VSX0gIUWihN68pPBs085IYfaumq05uWr2rhrRmuxqnrw83rAEdvDJjhDoNF4qnaUIkbnVgcP88GvAZAgCjoAuJITJuBjevfUGM4OWIg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Jiang, Jieqiong</creator><creator>Wang, Minghuang</creator><creator>Chen, Zhong</creator><creator>Qiu, Yuefeng</creator><creator>Liu, Jinchao</creator><creator>Bai, Yunqing</creator><creator>Chen, Hongli</creator><creator>Hu, Yanglin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</title><author>Jiang, Jieqiong ; Wang, Minghuang ; Chen, Zhong ; Qiu, Yuefeng ; Liu, Jinchao ; Bai, Yunqing ; Chen, Hongli ; Hu, Yanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6099cb5cceea07fdbe469be24a385224531eccc01c2a1fd7fdc55fb85de6343d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Blanket</topic><topic>Blanketing</topic><topic>Controled nuclear fusion plants</topic><topic>Depletion</topic><topic>Energy</topic><topic>Energy multiplication</topic><topic>Energy production</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Fusion</topic><topic>Hybrid reactor</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Libraries</topic><topic>Mathematical analysis</topic><topic>Multiplication</topic><topic>Neutronics</topic><topic>Nuclear fuels</topic><topic>Nuclear waste</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Pressurized water reactors</topic><topic>Tritium</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jieqiong</creatorcontrib><creatorcontrib>Wang, Minghuang</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Qiu, Yuefeng</creatorcontrib><creatorcontrib>Liu, Jinchao</creatorcontrib><creatorcontrib>Bai, Yunqing</creatorcontrib><creatorcontrib>Chen, Hongli</creatorcontrib><creatorcontrib>Hu, Yanglin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jieqiong</au><au>Wang, Minghuang</au><au>Chen, Zhong</au><au>Qiu, Yuefeng</au><au>Liu, Jinchao</au><au>Bai, Yunqing</au><au>Chen, Hongli</au><au>Hu, Yanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor</atitle><jtitle>Fusion engineering and design</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>85</volume><issue>10</issue><spage>2115</spage><epage>2119</epage><pages>2115-2119</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor ( M) and tritium breeding ratio (TBR) in a fusion–fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2010.08.013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2010-12, Vol.85 (10), p.2115-2119
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_869795864
source Elsevier ScienceDirect Journals
subjects Applied sciences
Blanket
Blanketing
Controled nuclear fusion plants
Depletion
Energy
Energy multiplication
Energy production
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Fusion
Hybrid reactor
Installations for energy generation and conversion: thermal and electrical energy
Libraries
Mathematical analysis
Multiplication
Neutronics
Nuclear fuels
Nuclear waste
Preparation and processing of nuclear fuels
Pressurized water reactors
Tritium
Uranium
title Neutronics analysis of water-cooled energy production blanket for a fusion–fission hybrid reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutronics%20analysis%20of%20water-cooled%20energy%20production%20blanket%20for%20a%20fusion%E2%80%93fission%20hybrid%20reactor&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Jiang,%20Jieqiong&rft.date=2010-12-01&rft.volume=85&rft.issue=10&rft.spage=2115&rft.epage=2119&rft.pages=2115-2119&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2010.08.013&rft_dat=%3Cproquest_cross%3E869795864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869795864&rft_id=info:pmid/&rft_els_id=S0920379610003613&rfr_iscdi=true