Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography

A preliminary study of the chromatographic performance and permeability of a continuous silica xerogel column under reversed-phase HPLC conditions was performed. A porous chromatographic support was synthesized inside a 0.32 mm i.d. × 13 cm fused silica tube from potassium silicate solution and deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1996-08, Vol.68 (15), p.2709-2712
1. Verfasser: Fields, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2712
container_issue 15
container_start_page 2709
container_title Analytical chemistry (Washington)
container_volume 68
creator Fields, Steven M.
description A preliminary study of the chromatographic performance and permeability of a continuous silica xerogel column under reversed-phase HPLC conditions was performed. A porous chromatographic support was synthesized inside a 0.32 mm i.d. × 13 cm fused silica tube from potassium silicate solution and derivatized with dimethyloctadecylchlorosilane. The plate height at 0.01 cm/s (0.5 μL/min), near the apparent optimum linear velocity, was about 65 μm. The column efficiencies in terms of numbers of plates per meter were 5000 and 13 000 for ethyl benzoate (k = 0.8) and naphthalene (k = 2.0), respectively, at 0.5 μL/min. The major parameter affecting column efficiency was the heterogeneous morphology of the xerogel, modifications to which are expected to improve chromatographic performance. The column provided efficiencies comparable to those reported for continuous polymeric columns but less than that previously reported for a continuous silica column. Gradient elution mode was demonstrated with a mixture of polycyclic aromatic hydrocarbons. The column was highly permeable, exhibiting a linear dependence of pressure to flow rate and a back pressure of only 632 psi at 10 μL/min when a 95% aqueous mobile phase was used.
doi_str_mv 10.1021/ac951247v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869591802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>869591802</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-738bc7a45dcb852904adab41b34ee907a51b45568e4c636b114a337eadae9a973</originalsourceid><addsrcrecordid>eNpl0F1rFDEUBuAgil2rF_4BGUQRL0Zz8jlzWRZrrSsubIXehTPZ7G7qzGSazJT23xvZdQW9yoE8vJzzEvIS6AegDD6irSUwoe8ekRlIRktVVewxmVFKeck0pSfkWUo3lAJQUE_JCQMFNQM9I9cr33qLxbWLYevaAlOBxTz0o--nMKU8tlPXF6tpGEIci02IxYXf7sqli3nusLeuWPjbya-L-S6GDsewjTjsHp6TJxtsk3txeE_Jj_NPV_OLcvH985f52aJEodlYal41VqOQa9tUktVU4BobAQ0XztVUo4RGSKkqJ6ziqgEQyLl2Wbkaa81Pybt97hDD7eTSaDqfrGtb7F0-wFSqljVUlGX5-h95E6bY5-VMrqKSXDGa0fs9sjGkFN3GDNF3GB8MUPO7bHMsO9tXh8Cp6dz6KP-0m8GbA8Bksd3EXJdPR8dBiRyVWblnPo3u_viN8adRmmtprpYrs7z8uoRv1bm5zP7t3qNNf2_4f79fh1Kg0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217853620</pqid></control><display><type>article</type><title>Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography</title><source>American Chemical Society Journals</source><creator>Fields, Steven M.</creator><creatorcontrib>Fields, Steven M.</creatorcontrib><description>A preliminary study of the chromatographic performance and permeability of a continuous silica xerogel column under reversed-phase HPLC conditions was performed. A porous chromatographic support was synthesized inside a 0.32 mm i.d. × 13 cm fused silica tube from potassium silicate solution and derivatized with dimethyloctadecylchlorosilane. The plate height at 0.01 cm/s (0.5 μL/min), near the apparent optimum linear velocity, was about 65 μm. The column efficiencies in terms of numbers of plates per meter were 5000 and 13 000 for ethyl benzoate (k = 0.8) and naphthalene (k = 2.0), respectively, at 0.5 μL/min. The major parameter affecting column efficiency was the heterogeneous morphology of the xerogel, modifications to which are expected to improve chromatographic performance. The column provided efficiencies comparable to those reported for continuous polymeric columns but less than that previously reported for a continuous silica column. Gradient elution mode was demonstrated with a mixture of polycyclic aromatic hydrocarbons. The column was highly permeable, exhibiting a linear dependence of pressure to flow rate and a back pressure of only 632 psi at 10 μL/min when a 95% aqueous mobile phase was used.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac951247v</identifier><identifier>PMID: 21619217</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Other chromatographic methods ; Permeability ; Silicon</subject><ispartof>Analytical chemistry (Washington), 1996-08, Vol.68 (15), p.2709-2712</ispartof><rights>Copyright © 1996 American Chemical Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-738bc7a45dcb852904adab41b34ee907a51b45568e4c636b114a337eadae9a973</citedby><cites>FETCH-LOGICAL-a472t-738bc7a45dcb852904adab41b34ee907a51b45568e4c636b114a337eadae9a973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac951247v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac951247v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3164512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21619217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fields, Steven M.</creatorcontrib><title>Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A preliminary study of the chromatographic performance and permeability of a continuous silica xerogel column under reversed-phase HPLC conditions was performed. A porous chromatographic support was synthesized inside a 0.32 mm i.d. × 13 cm fused silica tube from potassium silicate solution and derivatized with dimethyloctadecylchlorosilane. The plate height at 0.01 cm/s (0.5 μL/min), near the apparent optimum linear velocity, was about 65 μm. The column efficiencies in terms of numbers of plates per meter were 5000 and 13 000 for ethyl benzoate (k = 0.8) and naphthalene (k = 2.0), respectively, at 0.5 μL/min. The major parameter affecting column efficiency was the heterogeneous morphology of the xerogel, modifications to which are expected to improve chromatographic performance. The column provided efficiencies comparable to those reported for continuous polymeric columns but less than that previously reported for a continuous silica column. Gradient elution mode was demonstrated with a mixture of polycyclic aromatic hydrocarbons. The column was highly permeable, exhibiting a linear dependence of pressure to flow rate and a back pressure of only 632 psi at 10 μL/min when a 95% aqueous mobile phase was used.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Other chromatographic methods</subject><subject>Permeability</subject><subject>Silicon</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpl0F1rFDEUBuAgil2rF_4BGUQRL0Zz8jlzWRZrrSsubIXehTPZ7G7qzGSazJT23xvZdQW9yoE8vJzzEvIS6AegDD6irSUwoe8ekRlIRktVVewxmVFKeck0pSfkWUo3lAJQUE_JCQMFNQM9I9cr33qLxbWLYevaAlOBxTz0o--nMKU8tlPXF6tpGEIci02IxYXf7sqli3nusLeuWPjbya-L-S6GDsewjTjsHp6TJxtsk3txeE_Jj_NPV_OLcvH985f52aJEodlYal41VqOQa9tUktVU4BobAQ0XztVUo4RGSKkqJ6ziqgEQyLl2Wbkaa81Pybt97hDD7eTSaDqfrGtb7F0-wFSqljVUlGX5-h95E6bY5-VMrqKSXDGa0fs9sjGkFN3GDNF3GB8MUPO7bHMsO9tXh8Cp6dz6KP-0m8GbA8Bksd3EXJdPR8dBiRyVWblnPo3u_viN8adRmmtprpYrs7z8uoRv1bm5zP7t3qNNf2_4f79fh1Kg0Q</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Fields, Steven M.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19960801</creationdate><title>Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography</title><author>Fields, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-738bc7a45dcb852904adab41b34ee907a51b45568e4c636b114a337eadae9a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Other chromatographic methods</topic><topic>Permeability</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fields, Steven M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fields, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>68</volume><issue>15</issue><spage>2709</spage><epage>2712</epage><pages>2709-2712</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A preliminary study of the chromatographic performance and permeability of a continuous silica xerogel column under reversed-phase HPLC conditions was performed. A porous chromatographic support was synthesized inside a 0.32 mm i.d. × 13 cm fused silica tube from potassium silicate solution and derivatized with dimethyloctadecylchlorosilane. The plate height at 0.01 cm/s (0.5 μL/min), near the apparent optimum linear velocity, was about 65 μm. The column efficiencies in terms of numbers of plates per meter were 5000 and 13 000 for ethyl benzoate (k = 0.8) and naphthalene (k = 2.0), respectively, at 0.5 μL/min. The major parameter affecting column efficiency was the heterogeneous morphology of the xerogel, modifications to which are expected to improve chromatographic performance. The column provided efficiencies comparable to those reported for continuous polymeric columns but less than that previously reported for a continuous silica column. Gradient elution mode was demonstrated with a mixture of polycyclic aromatic hydrocarbons. The column was highly permeable, exhibiting a linear dependence of pressure to flow rate and a back pressure of only 632 psi at 10 μL/min when a 95% aqueous mobile phase was used.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21619217</pmid><doi>10.1021/ac951247v</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 1996-08, Vol.68 (15), p.2709-2712
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_869591802
source American Chemical Society Journals
subjects Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Other chromatographic methods
Permeability
Silicon
title Silica Xerogel as a Continuous Column Support for High-Performance Liquid Chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica%20Xerogel%20as%20a%20Continuous%20Column%20Support%20for%20High-Performance%20Liquid%20Chromatography&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Fields,%20Steven%20M.&rft.date=1996-08-01&rft.volume=68&rft.issue=15&rft.spage=2709&rft.epage=2712&rft.pages=2709-2712&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac951247v&rft_dat=%3Cproquest_cross%3E869591802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217853620&rft_id=info:pmid/21619217&rfr_iscdi=true