Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes
The use of yeast‐ and plant‐derived hydrolysates in cell culture production processes has sparked concerns over the potential immunogenicity risk posed by β‐glucans and yeast peptides contained in these raw materials. This article utilizes a combination of in‐process testing from large‐scale manufac...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2011-03, Vol.27 (2), p.442-450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 2 |
container_start_page | 442 |
container_title | Biotechnology progress |
container_volume | 27 |
creator | Jiang, Canping Scherfner, Sarah Shukla, Abhinav A. |
description | The use of yeast‐ and plant‐derived hydrolysates in cell culture production processes has sparked concerns over the potential immunogenicity risk posed by β‐glucans and yeast peptides contained in these raw materials. This article utilizes a combination of in‐process testing from large‐scale manufacturing and scale‐down spiking studies to demonstrate the clearance of β‐glucans and yeast peptides through chromatographic steps in the downstream purification process for a monoclonal antibody. β‐Glucans were found to flow through most all three modes of chromatography (Protein A, cation and anion exchange) without binding to the resins or the product. Protein A affinity chromatography was found to provide the best clearance factor. The efficacy of the resin sanitization and storage procedures to prevent carryover from one run to the next was also demonstrated. Yeast peptides were found to be metabolized during the cell culture process and were undetectable after the Protein A purification step. The data presented here serve to allay concerns about the use of hydrolysates in cell culture production. The methodology presented here provides a template to demonstrate clearance of β‐glucans and yeast peptides through chromatographic steps in downstream processing. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 |
doi_str_mv | 10.1002/btpr.568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869590117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861792256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4208-d2bc9eb0636c223dec9501b5e339dc04c4ddcd1e6288acad3f14f9957d6d0aae3</originalsourceid><addsrcrecordid>eNqN0Mtu1DAUxnELgei0IPEEyBtENym-xI69pAVapIpLNQg2yDqxT4ohN-xEZV6LB-GZyGiGskJidTY_nU_6E_KIsxPOmHhWT2M6UdrcISuuBCs0k_IuWZlK6aKy0hyQw5y_MsYM0-I-ORBcalWZckU-v8Bu6POUYIr9Nf31s7huZw89hT7QDUKe6IjjFANS3yIk6D3S2NM6DuMXSB14nKfooaVhuNn-QejomAaPOWN-QO410GZ8uL9H5MOrl-uzi-Ly7fnrs-eXhS8FM0UQtbdYMy21F0IG9FYxXiuU0gbPSl-G4ANHLYwBD0E2vGysVVXQgQGgPCJPd3-X5e8z5sl1MXtsW-hxmLMz2irLOK_-Q_LKCqH0Io930qch54SNG1PsIG0cZ25b3W2ru6X6Qh_vn851h-EW_sm8gCd7AHlp1WwzxvzXlcyW2tjFFTt3E1vc_HPQna7fXe2G9z7mCX_cekjfnK5kpdzHN-dOXLxffxJXayflbwH0qwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861792256</pqid></control><display><type>article</type><title>Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Jiang, Canping ; Scherfner, Sarah ; Shukla, Abhinav A.</creator><creatorcontrib>Jiang, Canping ; Scherfner, Sarah ; Shukla, Abhinav A.</creatorcontrib><description>The use of yeast‐ and plant‐derived hydrolysates in cell culture production processes has sparked concerns over the potential immunogenicity risk posed by β‐glucans and yeast peptides contained in these raw materials. This article utilizes a combination of in‐process testing from large‐scale manufacturing and scale‐down spiking studies to demonstrate the clearance of β‐glucans and yeast peptides through chromatographic steps in the downstream purification process for a monoclonal antibody. β‐Glucans were found to flow through most all three modes of chromatography (Protein A, cation and anion exchange) without binding to the resins or the product. Protein A affinity chromatography was found to provide the best clearance factor. The efficacy of the resin sanitization and storage procedures to prevent carryover from one run to the next was also demonstrated. Yeast peptides were found to be metabolized during the cell culture process and were undetectable after the Protein A purification step. The data presented here serve to allay concerns about the use of hydrolysates in cell culture production. The methodology presented here provides a template to demonstrate clearance of β‐glucans and yeast peptides through chromatographic steps in downstream processing. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</description><identifier>ISSN: 8756-7938</identifier><identifier>ISSN: 1520-6033</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.568</identifier><identifier>PMID: 21365784</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>beta-Glucans - isolation & purification ; Biological and medical sciences ; Biotechnology ; Cell Culture Techniques ; chromatography ; Chromatography - methods ; Chromatography - standards ; Culture Media, Conditioned - standards ; Fundamental and applied biological sciences. Psychology ; glucans ; hydrolyzates ; Peptides - isolation & purification ; Technology, Pharmaceutical - methods ; yeast peptide ; Yeasts - cytology</subject><ispartof>Biotechnology progress, 2011-03, Vol.27 (2), p.442-450</ispartof><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4208-d2bc9eb0636c223dec9501b5e339dc04c4ddcd1e6288acad3f14f9957d6d0aae3</citedby><cites>FETCH-LOGICAL-c4208-d2bc9eb0636c223dec9501b5e339dc04c4ddcd1e6288acad3f14f9957d6d0aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.568$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.568$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24094689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21365784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Canping</creatorcontrib><creatorcontrib>Scherfner, Sarah</creatorcontrib><creatorcontrib>Shukla, Abhinav A.</creatorcontrib><title>Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>The use of yeast‐ and plant‐derived hydrolysates in cell culture production processes has sparked concerns over the potential immunogenicity risk posed by β‐glucans and yeast peptides contained in these raw materials. This article utilizes a combination of in‐process testing from large‐scale manufacturing and scale‐down spiking studies to demonstrate the clearance of β‐glucans and yeast peptides through chromatographic steps in the downstream purification process for a monoclonal antibody. β‐Glucans were found to flow through most all three modes of chromatography (Protein A, cation and anion exchange) without binding to the resins or the product. Protein A affinity chromatography was found to provide the best clearance factor. The efficacy of the resin sanitization and storage procedures to prevent carryover from one run to the next was also demonstrated. Yeast peptides were found to be metabolized during the cell culture process and were undetectable after the Protein A purification step. The data presented here serve to allay concerns about the use of hydrolysates in cell culture production. The methodology presented here provides a template to demonstrate clearance of β‐glucans and yeast peptides through chromatographic steps in downstream processing. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</description><subject>beta-Glucans - isolation & purification</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques</subject><subject>chromatography</subject><subject>Chromatography - methods</subject><subject>Chromatography - standards</subject><subject>Culture Media, Conditioned - standards</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucans</subject><subject>hydrolyzates</subject><subject>Peptides - isolation & purification</subject><subject>Technology, Pharmaceutical - methods</subject><subject>yeast peptide</subject><subject>Yeasts - cytology</subject><issn>8756-7938</issn><issn>1520-6033</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0Mtu1DAUxnELgei0IPEEyBtENym-xI69pAVapIpLNQg2yDqxT4ohN-xEZV6LB-GZyGiGskJidTY_nU_6E_KIsxPOmHhWT2M6UdrcISuuBCs0k_IuWZlK6aKy0hyQw5y_MsYM0-I-ORBcalWZckU-v8Bu6POUYIr9Nf31s7huZw89hT7QDUKe6IjjFANS3yIk6D3S2NM6DuMXSB14nKfooaVhuNn-QejomAaPOWN-QO410GZ8uL9H5MOrl-uzi-Ly7fnrs-eXhS8FM0UQtbdYMy21F0IG9FYxXiuU0gbPSl-G4ANHLYwBD0E2vGysVVXQgQGgPCJPd3-X5e8z5sl1MXtsW-hxmLMz2irLOK_-Q_LKCqH0Io930qch54SNG1PsIG0cZ25b3W2ru6X6Qh_vn851h-EW_sm8gCd7AHlp1WwzxvzXlcyW2tjFFTt3E1vc_HPQna7fXe2G9z7mCX_cekjfnK5kpdzHN-dOXLxffxJXayflbwH0qwk</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Jiang, Canping</creator><creator>Scherfner, Sarah</creator><creator>Shukla, Abhinav A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201103</creationdate><title>Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes</title><author>Jiang, Canping ; Scherfner, Sarah ; Shukla, Abhinav A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4208-d2bc9eb0636c223dec9501b5e339dc04c4ddcd1e6288acad3f14f9957d6d0aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>beta-Glucans - isolation & purification</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques</topic><topic>chromatography</topic><topic>Chromatography - methods</topic><topic>Chromatography - standards</topic><topic>Culture Media, Conditioned - standards</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucans</topic><topic>hydrolyzates</topic><topic>Peptides - isolation & purification</topic><topic>Technology, Pharmaceutical - methods</topic><topic>yeast peptide</topic><topic>Yeasts - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Canping</creatorcontrib><creatorcontrib>Scherfner, Sarah</creatorcontrib><creatorcontrib>Shukla, Abhinav A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Canping</au><au>Scherfner, Sarah</au><au>Shukla, Abhinav A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2011-03</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>442</spage><epage>450</epage><pages>442-450</pages><issn>8756-7938</issn><issn>1520-6033</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>The use of yeast‐ and plant‐derived hydrolysates in cell culture production processes has sparked concerns over the potential immunogenicity risk posed by β‐glucans and yeast peptides contained in these raw materials. This article utilizes a combination of in‐process testing from large‐scale manufacturing and scale‐down spiking studies to demonstrate the clearance of β‐glucans and yeast peptides through chromatographic steps in the downstream purification process for a monoclonal antibody. β‐Glucans were found to flow through most all three modes of chromatography (Protein A, cation and anion exchange) without binding to the resins or the product. Protein A affinity chromatography was found to provide the best clearance factor. The efficacy of the resin sanitization and storage procedures to prevent carryover from one run to the next was also demonstrated. Yeast peptides were found to be metabolized during the cell culture process and were undetectable after the Protein A purification step. The data presented here serve to allay concerns about the use of hydrolysates in cell culture production. The methodology presented here provides a template to demonstrate clearance of β‐glucans and yeast peptides through chromatographic steps in downstream processing. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21365784</pmid><doi>10.1002/btpr.568</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2011-03, Vol.27 (2), p.442-450 |
issn | 8756-7938 1520-6033 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_869590117 |
source | MEDLINE; Access via Wiley Online Library |
subjects | beta-Glucans - isolation & purification Biological and medical sciences Biotechnology Cell Culture Techniques chromatography Chromatography - methods Chromatography - standards Culture Media, Conditioned - standards Fundamental and applied biological sciences. Psychology glucans hydrolyzates Peptides - isolation & purification Technology, Pharmaceutical - methods yeast peptide Yeasts - cytology |
title | Demonstrating β-glucan and yeast peptide clearance in biopharmaceutical downstream processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstrating%20%CE%B2-glucan%20and%20yeast%20peptide%20clearance%20in%20biopharmaceutical%20downstream%20processes&rft.jtitle=Biotechnology%20progress&rft.au=Jiang,%20Canping&rft.date=2011-03&rft.volume=27&rft.issue=2&rft.spage=442&rft.epage=450&rft.pages=442-450&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.568&rft_dat=%3Cproquest_cross%3E861792256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861792256&rft_id=info:pmid/21365784&rfr_iscdi=true |