Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst

In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-06, Vol.102 (11), p.6385-6391
Hauptverfasser: Mendow, G., Veizaga, N.S., Querini, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6391
container_issue 11
container_start_page 6385
container_title Bioresource technology
container_volume 102
creator Mendow, G.
Veizaga, N.S.
Querini, C.A.
description In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction. It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.
doi_str_mv 10.1016/j.biortech.2011.01.072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869589078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411001441</els_id><sourcerecordid>1671334607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oK0zYGN1UCxTFjysnk1EnmcSNLg2h4GLT0lUjUCb99tLTPbpTk5uw4Dtw7jkIXVCypoSKN9v1GOdcwW3WjFC6Jm0ke4RWVMm-Y1qKx2hFtCCdGhg_Q89K2RJCeirZU3TGaN9rIoYV-npdN_uEoVTI-C7PfnE1zhMe93gz7-ZvMMG8FGzTd5viBLhmO5V7Oobo7IF9i2-mkBaYHOA54LoB3C5s2pf6HD0JNhV4cTrP0Zf315-vPna3nz7cXF3edo4LVjvOxjCA0pz3DIj33tnAR9BM22HUvfPKMa6EhkETooQMox2Etl7SwbIRbH-OXh3fbRv8WJo9s4vFQUr23r5p2kFpItV_kFyqlhNp5Ou_klTIliIXRDZUHFGX51IyBHOX487mvaHEHOoyW_NQlznUZUgbyZrw4vTHMu7A_5Y99NOAlyfAFmdTaOm7WP5wnArBmWjcuyMHLeWfEbIpLh4a8TGDq8bP8V9efgHlcbfj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671334607</pqid></control><display><type>article</type><title>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mendow, G. ; Veizaga, N.S. ; Querini, C.A.</creator><creatorcontrib>Mendow, G. ; Veizaga, N.S. ; Querini, C.A.</creatorcontrib><description>In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction. It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.01.072</identifier><identifier>PMID: 21339065</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biodiesel ; Biofuel production ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Catalysis ; Catalysts ; Consumption ; Conversion ; Energy ; Esterification ; Esters - chemical synthesis ; Ethanol ; Ethanol - chemistry ; Ethyl alcohol ; Ethyl ester ; Ethyl esters ; Fundamental and applied biological sciences. Psychology ; Helianthus ; Hydroxides - chemistry ; Industrial applications and implications. Economical aspects ; Methanol - chemistry ; Methyl alcohol ; Potassium Compounds - chemistry ; Soaps - chemistry ; Sodium Hydroxide - chemistry ; Temperature ; Transesterification ; Triglycerides - chemistry ; Water</subject><ispartof>Bioresource technology, 2011-06, Vol.102 (11), p.6385-6391</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</citedby><cites>FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.01.072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24166426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendow, G.</creatorcontrib><creatorcontrib>Veizaga, N.S.</creatorcontrib><creatorcontrib>Querini, C.A.</creatorcontrib><title>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction. It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.</description><subject>Biodiesel</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Consumption</subject><subject>Conversion</subject><subject>Energy</subject><subject>Esterification</subject><subject>Esters - chemical synthesis</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Ethyl alcohol</subject><subject>Ethyl ester</subject><subject>Ethyl esters</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Helianthus</subject><subject>Hydroxides - chemistry</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Methanol - chemistry</subject><subject>Methyl alcohol</subject><subject>Potassium Compounds - chemistry</subject><subject>Soaps - chemistry</subject><subject>Sodium Hydroxide - chemistry</subject><subject>Temperature</subject><subject>Transesterification</subject><subject>Triglycerides - chemistry</subject><subject>Water</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oK0zYGN1UCxTFjysnk1EnmcSNLg2h4GLT0lUjUCb99tLTPbpTk5uw4Dtw7jkIXVCypoSKN9v1GOdcwW3WjFC6Jm0ke4RWVMm-Y1qKx2hFtCCdGhg_Q89K2RJCeirZU3TGaN9rIoYV-npdN_uEoVTI-C7PfnE1zhMe93gz7-ZvMMG8FGzTd5viBLhmO5V7Oobo7IF9i2-mkBaYHOA54LoB3C5s2pf6HD0JNhV4cTrP0Zf315-vPna3nz7cXF3edo4LVjvOxjCA0pz3DIj33tnAR9BM22HUvfPKMa6EhkETooQMox2Etl7SwbIRbH-OXh3fbRv8WJo9s4vFQUr23r5p2kFpItV_kFyqlhNp5Ou_klTIliIXRDZUHFGX51IyBHOX487mvaHEHOoyW_NQlznUZUgbyZrw4vTHMu7A_5Y99NOAlyfAFmdTaOm7WP5wnArBmWjcuyMHLeWfEbIpLh4a8TGDq8bP8V9efgHlcbfj</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Mendow, G.</creator><creator>Veizaga, N.S.</creator><creator>Querini, C.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110601</creationdate><title>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</title><author>Mendow, G. ; Veizaga, N.S. ; Querini, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biodiesel</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Consumption</topic><topic>Conversion</topic><topic>Energy</topic><topic>Esterification</topic><topic>Esters - chemical synthesis</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Ethyl alcohol</topic><topic>Ethyl ester</topic><topic>Ethyl esters</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Helianthus</topic><topic>Hydroxides - chemistry</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Methanol - chemistry</topic><topic>Methyl alcohol</topic><topic>Potassium Compounds - chemistry</topic><topic>Soaps - chemistry</topic><topic>Sodium Hydroxide - chemistry</topic><topic>Temperature</topic><topic>Transesterification</topic><topic>Triglycerides - chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendow, G.</creatorcontrib><creatorcontrib>Veizaga, N.S.</creatorcontrib><creatorcontrib>Querini, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendow, G.</au><au>Veizaga, N.S.</au><au>Querini, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>102</volume><issue>11</issue><spage>6385</spage><epage>6391</epage><pages>6385-6391</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction. It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21339065</pmid><doi>10.1016/j.biortech.2011.01.072</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-06, Vol.102 (11), p.6385-6391
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_869589078
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biodiesel
Biofuel production
Biological and medical sciences
Biotechnology
Biotechnology - methods
Catalysis
Catalysts
Consumption
Conversion
Energy
Esterification
Esters - chemical synthesis
Ethanol
Ethanol - chemistry
Ethyl alcohol
Ethyl ester
Ethyl esters
Fundamental and applied biological sciences. Psychology
Helianthus
Hydroxides - chemistry
Industrial applications and implications. Economical aspects
Methanol - chemistry
Methyl alcohol
Potassium Compounds - chemistry
Soaps - chemistry
Sodium Hydroxide - chemistry
Temperature
Transesterification
Triglycerides - chemistry
Water
title Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethyl%20ester%20production%20by%20homogeneous%20alkaline%20transesterification:%20Influence%20of%20the%20catalyst&rft.jtitle=Bioresource%20technology&rft.au=Mendow,%20G.&rft.date=2011-06-01&rft.volume=102&rft.issue=11&rft.spage=6385&rft.epage=6391&rft.pages=6385-6391&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.01.072&rft_dat=%3Cproquest_cross%3E1671334607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671334607&rft_id=info:pmid/21339065&rft_els_id=S0960852411001441&rfr_iscdi=true