Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst
In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2011-06, Vol.102 (11), p.6385-6391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6391 |
---|---|
container_issue | 11 |
container_start_page | 6385 |
container_title | Bioresource technology |
container_volume | 102 |
creator | Mendow, G. Veizaga, N.S. Querini, C.A. |
description | In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction.
It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%. |
doi_str_mv | 10.1016/j.biortech.2011.01.072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869589078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411001441</els_id><sourcerecordid>1671334607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oK0zYGN1UCxTFjysnk1EnmcSNLg2h4GLT0lUjUCb99tLTPbpTk5uw4Dtw7jkIXVCypoSKN9v1GOdcwW3WjFC6Jm0ke4RWVMm-Y1qKx2hFtCCdGhg_Q89K2RJCeirZU3TGaN9rIoYV-npdN_uEoVTI-C7PfnE1zhMe93gz7-ZvMMG8FGzTd5viBLhmO5V7Oobo7IF9i2-mkBaYHOA54LoB3C5s2pf6HD0JNhV4cTrP0Zf315-vPna3nz7cXF3edo4LVjvOxjCA0pz3DIj33tnAR9BM22HUvfPKMa6EhkETooQMox2Etl7SwbIRbH-OXh3fbRv8WJo9s4vFQUr23r5p2kFpItV_kFyqlhNp5Ou_klTIliIXRDZUHFGX51IyBHOX487mvaHEHOoyW_NQlznUZUgbyZrw4vTHMu7A_5Y99NOAlyfAFmdTaOm7WP5wnArBmWjcuyMHLeWfEbIpLh4a8TGDq8bP8V9efgHlcbfj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671334607</pqid></control><display><type>article</type><title>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mendow, G. ; Veizaga, N.S. ; Querini, C.A.</creator><creatorcontrib>Mendow, G. ; Veizaga, N.S. ; Querini, C.A.</creatorcontrib><description>In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction.
It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.01.072</identifier><identifier>PMID: 21339065</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biodiesel ; Biofuel production ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Catalysis ; Catalysts ; Consumption ; Conversion ; Energy ; Esterification ; Esters - chemical synthesis ; Ethanol ; Ethanol - chemistry ; Ethyl alcohol ; Ethyl ester ; Ethyl esters ; Fundamental and applied biological sciences. Psychology ; Helianthus ; Hydroxides - chemistry ; Industrial applications and implications. Economical aspects ; Methanol - chemistry ; Methyl alcohol ; Potassium Compounds - chemistry ; Soaps - chemistry ; Sodium Hydroxide - chemistry ; Temperature ; Transesterification ; Triglycerides - chemistry ; Water</subject><ispartof>Bioresource technology, 2011-06, Vol.102 (11), p.6385-6391</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</citedby><cites>FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2011.01.072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24166426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mendow, G.</creatorcontrib><creatorcontrib>Veizaga, N.S.</creatorcontrib><creatorcontrib>Querini, C.A.</creatorcontrib><title>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction.
It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.</description><subject>Biodiesel</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Consumption</subject><subject>Conversion</subject><subject>Energy</subject><subject>Esterification</subject><subject>Esters - chemical synthesis</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Ethyl alcohol</subject><subject>Ethyl ester</subject><subject>Ethyl esters</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Helianthus</subject><subject>Hydroxides - chemistry</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Methanol - chemistry</subject><subject>Methyl alcohol</subject><subject>Potassium Compounds - chemistry</subject><subject>Soaps - chemistry</subject><subject>Sodium Hydroxide - chemistry</subject><subject>Temperature</subject><subject>Transesterification</subject><subject>Triglycerides - chemistry</subject><subject>Water</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oK0zYGN1UCxTFjysnk1EnmcSNLg2h4GLT0lUjUCb99tLTPbpTk5uw4Dtw7jkIXVCypoSKN9v1GOdcwW3WjFC6Jm0ke4RWVMm-Y1qKx2hFtCCdGhg_Q89K2RJCeirZU3TGaN9rIoYV-npdN_uEoVTI-C7PfnE1zhMe93gz7-ZvMMG8FGzTd5viBLhmO5V7Oobo7IF9i2-mkBaYHOA54LoB3C5s2pf6HD0JNhV4cTrP0Zf315-vPna3nz7cXF3edo4LVjvOxjCA0pz3DIj33tnAR9BM22HUvfPKMa6EhkETooQMox2Etl7SwbIRbH-OXh3fbRv8WJo9s4vFQUr23r5p2kFpItV_kFyqlhNp5Ou_klTIliIXRDZUHFGX51IyBHOX487mvaHEHOoyW_NQlznUZUgbyZrw4vTHMu7A_5Y99NOAlyfAFmdTaOm7WP5wnArBmWjcuyMHLeWfEbIpLh4a8TGDq8bP8V9efgHlcbfj</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Mendow, G.</creator><creator>Veizaga, N.S.</creator><creator>Querini, C.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110601</creationdate><title>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</title><author>Mendow, G. ; Veizaga, N.S. ; Querini, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-42bf5e894432e0dddcaf4be929a5b93cd8c24869e5900867fba569ad715a2bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biodiesel</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Consumption</topic><topic>Conversion</topic><topic>Energy</topic><topic>Esterification</topic><topic>Esters - chemical synthesis</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Ethyl alcohol</topic><topic>Ethyl ester</topic><topic>Ethyl esters</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Helianthus</topic><topic>Hydroxides - chemistry</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Methanol - chemistry</topic><topic>Methyl alcohol</topic><topic>Potassium Compounds - chemistry</topic><topic>Soaps - chemistry</topic><topic>Sodium Hydroxide - chemistry</topic><topic>Temperature</topic><topic>Transesterification</topic><topic>Triglycerides - chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendow, G.</creatorcontrib><creatorcontrib>Veizaga, N.S.</creatorcontrib><creatorcontrib>Querini, C.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendow, G.</au><au>Veizaga, N.S.</au><au>Querini, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>102</volume><issue>11</issue><spage>6385</spage><epage>6391</epage><pages>6385-6391</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil–ethyl ester phase, thus accelerating the saponification reaction.
It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21339065</pmid><doi>10.1016/j.biortech.2011.01.072</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2011-06, Vol.102 (11), p.6385-6391 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_869589078 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biodiesel Biofuel production Biological and medical sciences Biotechnology Biotechnology - methods Catalysis Catalysts Consumption Conversion Energy Esterification Esters - chemical synthesis Ethanol Ethanol - chemistry Ethyl alcohol Ethyl ester Ethyl esters Fundamental and applied biological sciences. Psychology Helianthus Hydroxides - chemistry Industrial applications and implications. Economical aspects Methanol - chemistry Methyl alcohol Potassium Compounds - chemistry Soaps - chemistry Sodium Hydroxide - chemistry Temperature Transesterification Triglycerides - chemistry Water |
title | Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethyl%20ester%20production%20by%20homogeneous%20alkaline%20transesterification:%20Influence%20of%20the%20catalyst&rft.jtitle=Bioresource%20technology&rft.au=Mendow,%20G.&rft.date=2011-06-01&rft.volume=102&rft.issue=11&rft.spage=6385&rft.epage=6391&rft.pages=6385-6391&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.01.072&rft_dat=%3Cproquest_cross%3E1671334607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671334607&rft_id=info:pmid/21339065&rft_els_id=S0960852411001441&rfr_iscdi=true |