In-situ imaging sensors for bioprocess monitoring: state of the art
Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2010-11, Vol.398 (6), p.2429-2438 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2438 |
---|---|
container_issue | 6 |
container_start_page | 2429 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 398 |
creator | Bluma, Arne Höpfner, Tim Lindner, Patrick Rehbock, Christoph Beutel, Sascha Riechers, Daniel Hitzmann, Bernd Scheper, Thomas |
description | Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems—the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry. [graphic removed] |
doi_str_mv | 10.1007/s00216-010-4181-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_869585691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A398502473</galeid><sourcerecordid>A398502473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-3d23b6e74bba002c84621646bf6ae2f134a766f578b338f0bc946feab0a91d9d3</originalsourceid><addsrcrecordid>eNqFkbtu3DAQRQkjgd8fkCZRFzdyZvgYUemMRR4GDKRIXBOURG5orMQNKRX79-FCjksHLEgQ5w4u5jD2DuEWAZpPGYAj1YBQS9RYH07YORLqmpOCNy9vyc_YRc5PAKg00ik746CF0iTO2eZ-qnOYlyqMdhumbZXdlGPKlY-p6kLcp9i7nKsxTmGOqRCfqzzb2VXRV_NvV9k0X7G33u6yu36-L9nj1y-_Nt_rhx_f7jd3D3WvQM-1GLjoyDWy62wp3mtJpb2kzpN13KOQtiHyqtGdENpD17eSvLMd2BaHdhCX7OM6t5T6s7g8mzHk3u12dnJxyUZTq7SiFv9LNsQlaQ1UyJtXSWykbABR6oLerujW7pwJk49zsn05gxtDHyfnQ_m_E61WwGUjSgDXQJ9izsl5s09lzelgEMxRoFkFmiLQHAWaQ8m8f-6zdKMbXhL_jBWAr0DeH224ZJ7ikqay91enflhD3kZjtylk8_iTAwrAFpQkEn8BqQet1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744701148</pqid></control><display><type>article</type><title>In-situ imaging sensors for bioprocess monitoring: state of the art</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Bluma, Arne ; Höpfner, Tim ; Lindner, Patrick ; Rehbock, Christoph ; Beutel, Sascha ; Riechers, Daniel ; Hitzmann, Bernd ; Scheper, Thomas</creator><creatorcontrib>Bluma, Arne ; Höpfner, Tim ; Lindner, Patrick ; Rehbock, Christoph ; Beutel, Sascha ; Riechers, Daniel ; Hitzmann, Bernd ; Scheper, Thomas</creatorcontrib><description>Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems—the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry. [graphic removed]</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-010-4181-y</identifier><identifier>PMID: 20835863</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Analysis ; Analytical Chemistry ; Biochemistry ; Biological ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Biotechnology - instrumentation ; Biotechnology - methods ; Cell-size distribution ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Equipment Design ; Food Science ; Image Processing, Computer-Assisted - methods ; Image-based sensors ; In-situ Microscopy ; In-situ monitoring ; Inline estimation ; Laboratory Medicine ; Mathematical analysis ; Microscope and microscopy ; Microscopy - instrumentation ; Microscopy - methods ; Monitoring ; Monitoring/Environmental Analysis ; Monitors ; Morphology ; Review ; Sampling ; Sensors ; Shear</subject><ispartof>Analytical and bioanalytical chemistry, 2010-11, Vol.398 (6), p.2429-2438</ispartof><rights>Springer-Verlag 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-3d23b6e74bba002c84621646bf6ae2f134a766f578b338f0bc946feab0a91d9d3</citedby><cites>FETCH-LOGICAL-c508t-3d23b6e74bba002c84621646bf6ae2f134a766f578b338f0bc946feab0a91d9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-010-4181-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-010-4181-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20835863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bluma, Arne</creatorcontrib><creatorcontrib>Höpfner, Tim</creatorcontrib><creatorcontrib>Lindner, Patrick</creatorcontrib><creatorcontrib>Rehbock, Christoph</creatorcontrib><creatorcontrib>Beutel, Sascha</creatorcontrib><creatorcontrib>Riechers, Daniel</creatorcontrib><creatorcontrib>Hitzmann, Bernd</creatorcontrib><creatorcontrib>Scheper, Thomas</creatorcontrib><title>In-situ imaging sensors for bioprocess monitoring: state of the art</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems—the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry. [graphic removed]</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Biological</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology - instrumentation</subject><subject>Biotechnology - methods</subject><subject>Cell-size distribution</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Equipment Design</subject><subject>Food Science</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image-based sensors</subject><subject>In-situ Microscopy</subject><subject>In-situ monitoring</subject><subject>Inline estimation</subject><subject>Laboratory Medicine</subject><subject>Mathematical analysis</subject><subject>Microscope and microscopy</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Monitoring</subject><subject>Monitoring/Environmental Analysis</subject><subject>Monitors</subject><subject>Morphology</subject><subject>Review</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Shear</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtu3DAQRQkjgd8fkCZRFzdyZvgYUemMRR4GDKRIXBOURG5orMQNKRX79-FCjksHLEgQ5w4u5jD2DuEWAZpPGYAj1YBQS9RYH07YORLqmpOCNy9vyc_YRc5PAKg00ik746CF0iTO2eZ-qnOYlyqMdhumbZXdlGPKlY-p6kLcp9i7nKsxTmGOqRCfqzzb2VXRV_NvV9k0X7G33u6yu36-L9nj1y-_Nt_rhx_f7jd3D3WvQM-1GLjoyDWy62wp3mtJpb2kzpN13KOQtiHyqtGdENpD17eSvLMd2BaHdhCX7OM6t5T6s7g8mzHk3u12dnJxyUZTq7SiFv9LNsQlaQ1UyJtXSWykbABR6oLerujW7pwJk49zsn05gxtDHyfnQ_m_E61WwGUjSgDXQJ9izsl5s09lzelgEMxRoFkFmiLQHAWaQ8m8f-6zdKMbXhL_jBWAr0DeH224ZJ7ikqay91enflhD3kZjtylk8_iTAwrAFpQkEn8BqQet1g</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Bluma, Arne</creator><creator>Höpfner, Tim</creator><creator>Lindner, Patrick</creator><creator>Rehbock, Christoph</creator><creator>Beutel, Sascha</creator><creator>Riechers, Daniel</creator><creator>Hitzmann, Bernd</creator><creator>Scheper, Thomas</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>201011</creationdate><title>In-situ imaging sensors for bioprocess monitoring: state of the art</title><author>Bluma, Arne ; Höpfner, Tim ; Lindner, Patrick ; Rehbock, Christoph ; Beutel, Sascha ; Riechers, Daniel ; Hitzmann, Bernd ; Scheper, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-3d23b6e74bba002c84621646bf6ae2f134a766f578b338f0bc946feab0a91d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Biological</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology - instrumentation</topic><topic>Biotechnology - methods</topic><topic>Cell-size distribution</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Equipment Design</topic><topic>Food Science</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image-based sensors</topic><topic>In-situ Microscopy</topic><topic>In-situ monitoring</topic><topic>Inline estimation</topic><topic>Laboratory Medicine</topic><topic>Mathematical analysis</topic><topic>Microscope and microscopy</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Monitoring</topic><topic>Monitoring/Environmental Analysis</topic><topic>Monitors</topic><topic>Morphology</topic><topic>Review</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bluma, Arne</creatorcontrib><creatorcontrib>Höpfner, Tim</creatorcontrib><creatorcontrib>Lindner, Patrick</creatorcontrib><creatorcontrib>Rehbock, Christoph</creatorcontrib><creatorcontrib>Beutel, Sascha</creatorcontrib><creatorcontrib>Riechers, Daniel</creatorcontrib><creatorcontrib>Hitzmann, Bernd</creatorcontrib><creatorcontrib>Scheper, Thomas</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bluma, Arne</au><au>Höpfner, Tim</au><au>Lindner, Patrick</au><au>Rehbock, Christoph</au><au>Beutel, Sascha</au><au>Riechers, Daniel</au><au>Hitzmann, Bernd</au><au>Scheper, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ imaging sensors for bioprocess monitoring: state of the art</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2010-11</date><risdate>2010</risdate><volume>398</volume><issue>6</issue><spage>2429</spage><epage>2438</epage><pages>2429-2438</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395-403, 1993; Lausch et al. J Chromatogr A 654:190-195, 1993; Scheper et al. Ann NY Acad Sci 506:431-445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems—the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247-256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111-118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11-15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry. [graphic removed]</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20835863</pmid><doi>10.1007/s00216-010-4181-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2010-11, Vol.398 (6), p.2429-2438 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_869585691 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Analysis Analytical Chemistry Biochemistry Biological Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Biotechnology - instrumentation Biotechnology - methods Cell-size distribution Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Equipment Design Food Science Image Processing, Computer-Assisted - methods Image-based sensors In-situ Microscopy In-situ monitoring Inline estimation Laboratory Medicine Mathematical analysis Microscope and microscopy Microscopy - instrumentation Microscopy - methods Monitoring Monitoring/Environmental Analysis Monitors Morphology Review Sampling Sensors Shear |
title | In-situ imaging sensors for bioprocess monitoring: state of the art |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20imaging%20sensors%20for%20bioprocess%20monitoring:%20state%20of%20the%20art&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Bluma,%20Arne&rft.date=2010-11&rft.volume=398&rft.issue=6&rft.spage=2429&rft.epage=2438&rft.pages=2429-2438&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-010-4181-y&rft_dat=%3Cgale_proqu%3EA398502473%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744701148&rft_id=info:pmid/20835863&rft_galeid=A398502473&rfr_iscdi=true |