Temperature and the metabolic balance of streams
1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will infl...
Gespeichert in:
Veröffentlicht in: | Freshwater biology 2011-06, Vol.56 (6), p.1106-1121 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1121 |
---|---|
container_issue | 6 |
container_start_page | 1106 |
container_title | Freshwater biology |
container_volume | 56 |
creator | DEMARS, BENOÎT O.L RUSSELL MANSON, J ÓLAFSSON, JON S GÍSLASON, GÍSLI M GUDMUNDSDÓTTIR, RAKEL WOODWARD, GUY REISS, JULIA PICHLER, DORIS E RASMUSSEN, JES J FRIBERG, NIKOLAI |
description | 1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere. |
doi_str_mv | 10.1111/j.1365-2427.2010.02554.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869584470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3377877481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhq2qSN1Cf0Mj9dBTlnFiZ7wHDi2wfAhRVYA4jpxk3GZJNoudFcu_r0MQB071xZb9PDPjV4hEwlzGdbiay7zQaaYynGcQbyHTWs13H8Ts7eGjmAGoItWA8El8DmEFAEZjNhNwy92GvR22nhO7rpPhLycdD7bs26ZKStvadcVJ75IweLZdOBB7zraBv7zu--JueXp7fJ5e_Tq7OP5xlVYq1yq1aGXlEOoqV6yN4RqgyFCXLpPWYakKYwqHtq5LmQPmmCHLRZmbCsEpW-f74vtUd-P7xy2HgbomVNzGebjfBjLFQhulECL57R256rd-HYcjqVUBsEDESJmJqnwfgmdHG9901j-TBBqTpBWNgdEYGI1J0kuStIvq0aQ-NS0__7dHy_uf4yn66eQ3YeDdm2_9AxXx55rur8_o94m5RFxe0k3kv068sz3ZP74JdHcTKyuAsaHG_B_olI-z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546009777</pqid></control><display><type>article</type><title>Temperature and the metabolic balance of streams</title><source>Access via Wiley Online Library</source><creator>DEMARS, BENOÎT O.L ; RUSSELL MANSON, J ; ÓLAFSSON, JON S ; GÍSLASON, GÍSLI M ; GUDMUNDSDÓTTIR, RAKEL ; WOODWARD, GUY ; REISS, JULIA ; PICHLER, DORIS E ; RASMUSSEN, JES J ; FRIBERG, NIKOLAI</creator><creatorcontrib>DEMARS, BENOÎT O.L ; RUSSELL MANSON, J ; ÓLAFSSON, JON S ; GÍSLASON, GÍSLI M ; GUDMUNDSDÓTTIR, RAKEL ; WOODWARD, GUY ; REISS, JULIA ; PICHLER, DORIS E ; RASMUSSEN, JES J ; FRIBERG, NIKOLAI</creatorcontrib><description>1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.</description><identifier>ISSN: 0046-5070</identifier><identifier>EISSN: 1365-2427</identifier><identifier>DOI: 10.1111/j.1365-2427.2010.02554.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>altitude ; biogeochemical cycles ; carbon ; carbon dioxide ; climate change ; ecosystem respiration ; estuaries ; fluvial ecosystem ; Freshwater ; groundwater-fed stream ; hydrochemistry ; metabolic theory of ecology ; metabolism ; net ecosystem production ; nutrient availability ; nutrient content ; nutrient spiralling ; oxygen ; photosynthesis ; primary productivity ; rivers ; streams ; summer ; temperature ; terrestrial ecosystems</subject><ispartof>Freshwater biology, 2011-06, Vol.56 (6), p.1106-1121</ispartof><rights>2011 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</citedby><cites>FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2427.2010.02554.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2427.2010.02554.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>DEMARS, BENOÎT O.L</creatorcontrib><creatorcontrib>RUSSELL MANSON, J</creatorcontrib><creatorcontrib>ÓLAFSSON, JON S</creatorcontrib><creatorcontrib>GÍSLASON, GÍSLI M</creatorcontrib><creatorcontrib>GUDMUNDSDÓTTIR, RAKEL</creatorcontrib><creatorcontrib>WOODWARD, GUY</creatorcontrib><creatorcontrib>REISS, JULIA</creatorcontrib><creatorcontrib>PICHLER, DORIS E</creatorcontrib><creatorcontrib>RASMUSSEN, JES J</creatorcontrib><creatorcontrib>FRIBERG, NIKOLAI</creatorcontrib><title>Temperature and the metabolic balance of streams</title><title>Freshwater biology</title><description>1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.</description><subject>altitude</subject><subject>biogeochemical cycles</subject><subject>carbon</subject><subject>carbon dioxide</subject><subject>climate change</subject><subject>ecosystem respiration</subject><subject>estuaries</subject><subject>fluvial ecosystem</subject><subject>Freshwater</subject><subject>groundwater-fed stream</subject><subject>hydrochemistry</subject><subject>metabolic theory of ecology</subject><subject>metabolism</subject><subject>net ecosystem production</subject><subject>nutrient availability</subject><subject>nutrient content</subject><subject>nutrient spiralling</subject><subject>oxygen</subject><subject>photosynthesis</subject><subject>primary productivity</subject><subject>rivers</subject><subject>streams</subject><subject>summer</subject><subject>temperature</subject><subject>terrestrial ecosystems</subject><issn>0046-5070</issn><issn>1365-2427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P3DAQhq2qSN1Cf0Mj9dBTlnFiZ7wHDi2wfAhRVYA4jpxk3GZJNoudFcu_r0MQB071xZb9PDPjV4hEwlzGdbiay7zQaaYynGcQbyHTWs13H8Ts7eGjmAGoItWA8El8DmEFAEZjNhNwy92GvR22nhO7rpPhLycdD7bs26ZKStvadcVJ75IweLZdOBB7zraBv7zu--JueXp7fJ5e_Tq7OP5xlVYq1yq1aGXlEOoqV6yN4RqgyFCXLpPWYakKYwqHtq5LmQPmmCHLRZmbCsEpW-f74vtUd-P7xy2HgbomVNzGebjfBjLFQhulECL57R256rd-HYcjqVUBsEDESJmJqnwfgmdHG9901j-TBBqTpBWNgdEYGI1J0kuStIvq0aQ-NS0__7dHy_uf4yn66eQ3YeDdm2_9AxXx55rur8_o94m5RFxe0k3kv068sz3ZP74JdHcTKyuAsaHG_B_olI-z</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>DEMARS, BENOÎT O.L</creator><creator>RUSSELL MANSON, J</creator><creator>ÓLAFSSON, JON S</creator><creator>GÍSLASON, GÍSLI M</creator><creator>GUDMUNDSDÓTTIR, RAKEL</creator><creator>WOODWARD, GUY</creator><creator>REISS, JULIA</creator><creator>PICHLER, DORIS E</creator><creator>RASMUSSEN, JES J</creator><creator>FRIBERG, NIKOLAI</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7ST</scope><scope>7TV</scope><scope>H96</scope><scope>SOI</scope></search><sort><creationdate>201106</creationdate><title>Temperature and the metabolic balance of streams</title><author>DEMARS, BENOÎT O.L ; RUSSELL MANSON, J ; ÓLAFSSON, JON S ; GÍSLASON, GÍSLI M ; GUDMUNDSDÓTTIR, RAKEL ; WOODWARD, GUY ; REISS, JULIA ; PICHLER, DORIS E ; RASMUSSEN, JES J ; FRIBERG, NIKOLAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>altitude</topic><topic>biogeochemical cycles</topic><topic>carbon</topic><topic>carbon dioxide</topic><topic>climate change</topic><topic>ecosystem respiration</topic><topic>estuaries</topic><topic>fluvial ecosystem</topic><topic>Freshwater</topic><topic>groundwater-fed stream</topic><topic>hydrochemistry</topic><topic>metabolic theory of ecology</topic><topic>metabolism</topic><topic>net ecosystem production</topic><topic>nutrient availability</topic><topic>nutrient content</topic><topic>nutrient spiralling</topic><topic>oxygen</topic><topic>photosynthesis</topic><topic>primary productivity</topic><topic>rivers</topic><topic>streams</topic><topic>summer</topic><topic>temperature</topic><topic>terrestrial ecosystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DEMARS, BENOÎT O.L</creatorcontrib><creatorcontrib>RUSSELL MANSON, J</creatorcontrib><creatorcontrib>ÓLAFSSON, JON S</creatorcontrib><creatorcontrib>GÍSLASON, GÍSLI M</creatorcontrib><creatorcontrib>GUDMUNDSDÓTTIR, RAKEL</creatorcontrib><creatorcontrib>WOODWARD, GUY</creatorcontrib><creatorcontrib>REISS, JULIA</creatorcontrib><creatorcontrib>PICHLER, DORIS E</creatorcontrib><creatorcontrib>RASMUSSEN, JES J</creatorcontrib><creatorcontrib>FRIBERG, NIKOLAI</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Environment Abstracts</collection><jtitle>Freshwater biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DEMARS, BENOÎT O.L</au><au>RUSSELL MANSON, J</au><au>ÓLAFSSON, JON S</au><au>GÍSLASON, GÍSLI M</au><au>GUDMUNDSDÓTTIR, RAKEL</au><au>WOODWARD, GUY</au><au>REISS, JULIA</au><au>PICHLER, DORIS E</au><au>RASMUSSEN, JES J</au><au>FRIBERG, NIKOLAI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature and the metabolic balance of streams</atitle><jtitle>Freshwater biology</jtitle><date>2011-06</date><risdate>2011</risdate><volume>56</volume><issue>6</issue><spage>1106</spage><epage>1121</epage><pages>1106-1121</pages><issn>0046-5070</issn><eissn>1365-2427</eissn><abstract>1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2427.2010.02554.x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5070 |
ispartof | Freshwater biology, 2011-06, Vol.56 (6), p.1106-1121 |
issn | 0046-5070 1365-2427 |
language | eng |
recordid | cdi_proquest_miscellaneous_869584470 |
source | Access via Wiley Online Library |
subjects | altitude biogeochemical cycles carbon carbon dioxide climate change ecosystem respiration estuaries fluvial ecosystem Freshwater groundwater-fed stream hydrochemistry metabolic theory of ecology metabolism net ecosystem production nutrient availability nutrient content nutrient spiralling oxygen photosynthesis primary productivity rivers streams summer temperature terrestrial ecosystems |
title | Temperature and the metabolic balance of streams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20and%20the%20metabolic%20balance%20of%20streams&rft.jtitle=Freshwater%20biology&rft.au=DEMARS,%20BENO%C3%8ET%20O.L&rft.date=2011-06&rft.volume=56&rft.issue=6&rft.spage=1106&rft.epage=1121&rft.pages=1106-1121&rft.issn=0046-5070&rft.eissn=1365-2427&rft_id=info:doi/10.1111/j.1365-2427.2010.02554.x&rft_dat=%3Cproquest_cross%3E3377877481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546009777&rft_id=info:pmid/&rfr_iscdi=true |