Temperature and the metabolic balance of streams

1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will infl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Freshwater biology 2011-06, Vol.56 (6), p.1106-1121
Hauptverfasser: DEMARS, BENOÎT O.L, RUSSELL MANSON, J, ÓLAFSSON, JON S, GÍSLASON, GÍSLI M, GUDMUNDSDÓTTIR, RAKEL, WOODWARD, GUY, REISS, JULIA, PICHLER, DORIS E, RASMUSSEN, JES J, FRIBERG, NIKOLAI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1121
container_issue 6
container_start_page 1106
container_title Freshwater biology
container_volume 56
creator DEMARS, BENOÎT O.L
RUSSELL MANSON, J
ÓLAFSSON, JON S
GÍSLASON, GÍSLI M
GUDMUNDSDÓTTIR, RAKEL
WOODWARD, GUY
REISS, JULIA
PICHLER, DORIS E
RASMUSSEN, JES J
FRIBERG, NIKOLAI
description 1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.
doi_str_mv 10.1111/j.1365-2427.2010.02554.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869584470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3377877481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhq2qSN1Cf0Mj9dBTlnFiZ7wHDi2wfAhRVYA4jpxk3GZJNoudFcu_r0MQB071xZb9PDPjV4hEwlzGdbiay7zQaaYynGcQbyHTWs13H8Ts7eGjmAGoItWA8El8DmEFAEZjNhNwy92GvR22nhO7rpPhLycdD7bs26ZKStvadcVJ75IweLZdOBB7zraBv7zu--JueXp7fJ5e_Tq7OP5xlVYq1yq1aGXlEOoqV6yN4RqgyFCXLpPWYakKYwqHtq5LmQPmmCHLRZmbCsEpW-f74vtUd-P7xy2HgbomVNzGebjfBjLFQhulECL57R256rd-HYcjqVUBsEDESJmJqnwfgmdHG9901j-TBBqTpBWNgdEYGI1J0kuStIvq0aQ-NS0__7dHy_uf4yn66eQ3YeDdm2_9AxXx55rur8_o94m5RFxe0k3kv068sz3ZP74JdHcTKyuAsaHG_B_olI-z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546009777</pqid></control><display><type>article</type><title>Temperature and the metabolic balance of streams</title><source>Access via Wiley Online Library</source><creator>DEMARS, BENOÎT O.L ; RUSSELL MANSON, J ; ÓLAFSSON, JON S ; GÍSLASON, GÍSLI M ; GUDMUNDSDÓTTIR, RAKEL ; WOODWARD, GUY ; REISS, JULIA ; PICHLER, DORIS E ; RASMUSSEN, JES J ; FRIBERG, NIKOLAI</creator><creatorcontrib>DEMARS, BENOÎT O.L ; RUSSELL MANSON, J ; ÓLAFSSON, JON S ; GÍSLASON, GÍSLI M ; GUDMUNDSDÓTTIR, RAKEL ; WOODWARD, GUY ; REISS, JULIA ; PICHLER, DORIS E ; RASMUSSEN, JES J ; FRIBERG, NIKOLAI</creatorcontrib><description>1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.</description><identifier>ISSN: 0046-5070</identifier><identifier>EISSN: 1365-2427</identifier><identifier>DOI: 10.1111/j.1365-2427.2010.02554.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>altitude ; biogeochemical cycles ; carbon ; carbon dioxide ; climate change ; ecosystem respiration ; estuaries ; fluvial ecosystem ; Freshwater ; groundwater-fed stream ; hydrochemistry ; metabolic theory of ecology ; metabolism ; net ecosystem production ; nutrient availability ; nutrient content ; nutrient spiralling ; oxygen ; photosynthesis ; primary productivity ; rivers ; streams ; summer ; temperature ; terrestrial ecosystems</subject><ispartof>Freshwater biology, 2011-06, Vol.56 (6), p.1106-1121</ispartof><rights>2011 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</citedby><cites>FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2427.2010.02554.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2427.2010.02554.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>DEMARS, BENOÎT O.L</creatorcontrib><creatorcontrib>RUSSELL MANSON, J</creatorcontrib><creatorcontrib>ÓLAFSSON, JON S</creatorcontrib><creatorcontrib>GÍSLASON, GÍSLI M</creatorcontrib><creatorcontrib>GUDMUNDSDÓTTIR, RAKEL</creatorcontrib><creatorcontrib>WOODWARD, GUY</creatorcontrib><creatorcontrib>REISS, JULIA</creatorcontrib><creatorcontrib>PICHLER, DORIS E</creatorcontrib><creatorcontrib>RASMUSSEN, JES J</creatorcontrib><creatorcontrib>FRIBERG, NIKOLAI</creatorcontrib><title>Temperature and the metabolic balance of streams</title><title>Freshwater biology</title><description>1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.</description><subject>altitude</subject><subject>biogeochemical cycles</subject><subject>carbon</subject><subject>carbon dioxide</subject><subject>climate change</subject><subject>ecosystem respiration</subject><subject>estuaries</subject><subject>fluvial ecosystem</subject><subject>Freshwater</subject><subject>groundwater-fed stream</subject><subject>hydrochemistry</subject><subject>metabolic theory of ecology</subject><subject>metabolism</subject><subject>net ecosystem production</subject><subject>nutrient availability</subject><subject>nutrient content</subject><subject>nutrient spiralling</subject><subject>oxygen</subject><subject>photosynthesis</subject><subject>primary productivity</subject><subject>rivers</subject><subject>streams</subject><subject>summer</subject><subject>temperature</subject><subject>terrestrial ecosystems</subject><issn>0046-5070</issn><issn>1365-2427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P3DAQhq2qSN1Cf0Mj9dBTlnFiZ7wHDi2wfAhRVYA4jpxk3GZJNoudFcu_r0MQB071xZb9PDPjV4hEwlzGdbiay7zQaaYynGcQbyHTWs13H8Ts7eGjmAGoItWA8El8DmEFAEZjNhNwy92GvR22nhO7rpPhLycdD7bs26ZKStvadcVJ75IweLZdOBB7zraBv7zu--JueXp7fJ5e_Tq7OP5xlVYq1yq1aGXlEOoqV6yN4RqgyFCXLpPWYakKYwqHtq5LmQPmmCHLRZmbCsEpW-f74vtUd-P7xy2HgbomVNzGebjfBjLFQhulECL57R256rd-HYcjqVUBsEDESJmJqnwfgmdHG9901j-TBBqTpBWNgdEYGI1J0kuStIvq0aQ-NS0__7dHy_uf4yn66eQ3YeDdm2_9AxXx55rur8_o94m5RFxe0k3kv068sz3ZP74JdHcTKyuAsaHG_B_olI-z</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>DEMARS, BENOÎT O.L</creator><creator>RUSSELL MANSON, J</creator><creator>ÓLAFSSON, JON S</creator><creator>GÍSLASON, GÍSLI M</creator><creator>GUDMUNDSDÓTTIR, RAKEL</creator><creator>WOODWARD, GUY</creator><creator>REISS, JULIA</creator><creator>PICHLER, DORIS E</creator><creator>RASMUSSEN, JES J</creator><creator>FRIBERG, NIKOLAI</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7ST</scope><scope>7TV</scope><scope>H96</scope><scope>SOI</scope></search><sort><creationdate>201106</creationdate><title>Temperature and the metabolic balance of streams</title><author>DEMARS, BENOÎT O.L ; RUSSELL MANSON, J ; ÓLAFSSON, JON S ; GÍSLASON, GÍSLI M ; GUDMUNDSDÓTTIR, RAKEL ; WOODWARD, GUY ; REISS, JULIA ; PICHLER, DORIS E ; RASMUSSEN, JES J ; FRIBERG, NIKOLAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4354-a7a1cf70dc34e588ed006275bf21af7b46886f7addb13073727e19b38c70f4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>altitude</topic><topic>biogeochemical cycles</topic><topic>carbon</topic><topic>carbon dioxide</topic><topic>climate change</topic><topic>ecosystem respiration</topic><topic>estuaries</topic><topic>fluvial ecosystem</topic><topic>Freshwater</topic><topic>groundwater-fed stream</topic><topic>hydrochemistry</topic><topic>metabolic theory of ecology</topic><topic>metabolism</topic><topic>net ecosystem production</topic><topic>nutrient availability</topic><topic>nutrient content</topic><topic>nutrient spiralling</topic><topic>oxygen</topic><topic>photosynthesis</topic><topic>primary productivity</topic><topic>rivers</topic><topic>streams</topic><topic>summer</topic><topic>temperature</topic><topic>terrestrial ecosystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DEMARS, BENOÎT O.L</creatorcontrib><creatorcontrib>RUSSELL MANSON, J</creatorcontrib><creatorcontrib>ÓLAFSSON, JON S</creatorcontrib><creatorcontrib>GÍSLASON, GÍSLI M</creatorcontrib><creatorcontrib>GUDMUNDSDÓTTIR, RAKEL</creatorcontrib><creatorcontrib>WOODWARD, GUY</creatorcontrib><creatorcontrib>REISS, JULIA</creatorcontrib><creatorcontrib>PICHLER, DORIS E</creatorcontrib><creatorcontrib>RASMUSSEN, JES J</creatorcontrib><creatorcontrib>FRIBERG, NIKOLAI</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Environment Abstracts</collection><jtitle>Freshwater biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DEMARS, BENOÎT O.L</au><au>RUSSELL MANSON, J</au><au>ÓLAFSSON, JON S</au><au>GÍSLASON, GÍSLI M</au><au>GUDMUNDSDÓTTIR, RAKEL</au><au>WOODWARD, GUY</au><au>REISS, JULIA</au><au>PICHLER, DORIS E</au><au>RASMUSSEN, JES J</au><au>FRIBERG, NIKOLAI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature and the metabolic balance of streams</atitle><jtitle>Freshwater biology</jtitle><date>2011-06</date><risdate>2011</risdate><volume>56</volume><issue>6</issue><spage>1106</spage><epage>1121</epage><pages>1106-1121</pages><issn>0046-5070</issn><eissn>1365-2427</eissn><abstract>1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment' to demonstrate the role of temperature and nutrient cycling in whole-system metabolism (ER, GPP and net ecosystem production - NEP), in naturally heated geothermal (5-25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1-25 g C m⁻² day⁻¹ and GPP 1-10 g C m⁻² day⁻¹. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year⁻¹ at 13 °C to 0.21 (0.15-0.33) Pg C year⁻¹ with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO₂ flux back to the atmosphere.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2427.2010.02554.x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0046-5070
ispartof Freshwater biology, 2011-06, Vol.56 (6), p.1106-1121
issn 0046-5070
1365-2427
language eng
recordid cdi_proquest_miscellaneous_869584470
source Access via Wiley Online Library
subjects altitude
biogeochemical cycles
carbon
carbon dioxide
climate change
ecosystem respiration
estuaries
fluvial ecosystem
Freshwater
groundwater-fed stream
hydrochemistry
metabolic theory of ecology
metabolism
net ecosystem production
nutrient availability
nutrient content
nutrient spiralling
oxygen
photosynthesis
primary productivity
rivers
streams
summer
temperature
terrestrial ecosystems
title Temperature and the metabolic balance of streams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20and%20the%20metabolic%20balance%20of%20streams&rft.jtitle=Freshwater%20biology&rft.au=DEMARS,%20BENO%C3%8ET%20O.L&rft.date=2011-06&rft.volume=56&rft.issue=6&rft.spage=1106&rft.epage=1121&rft.pages=1106-1121&rft.issn=0046-5070&rft.eissn=1365-2427&rft_id=info:doi/10.1111/j.1365-2427.2010.02554.x&rft_dat=%3Cproquest_cross%3E3377877481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546009777&rft_id=info:pmid/&rfr_iscdi=true