Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver
This paper discusses a parallelized magneto-hydrodynamic flow solver for modeling axis-symmetric thermal plasma flow using Cartesian grid system and taking the induced electrical and magnetic effects into account, where the magneto-hydrodynamic equations, including the continuity equation, momentum...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2011-06, Vol.45 (1), p.109-115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Computers & fluids |
container_volume | 45 |
creator | Chau, S.W. Hsu, K.L. |
description | This paper discusses a parallelized magneto-hydrodynamic flow solver for modeling axis-symmetric thermal plasma flow using Cartesian grid system and taking the induced electrical and magnetic effects into account, where the magneto-hydrodynamic equations, including the continuity equation, momentum equations, energy equation, current continuity equation and turbulence transport equations are solved by a finite volume discretization in a segregated manner. The thermal plasma flow of a 476
mm long, transferred well-type plasma torch operating with air is simulated for two power conditions, i.e.
I
=
432
A and 901
A, to demonstrate the capability of proposed numerical model to analyze the heat and mass transfer characteristics of axis-symmetric thermal plasma flow, where the location of cathode is determined by fixing the measured voltage drop between two electrodes. The numerical calculation suggests that the high-power case can deliver an axial velocity of 400
m/s and 15,000
K in temperature at the center of torch outlet, where a strong jetting vortex is expected emitting from the torch body. The low-power case is predicted with a longer electric arc than that of the high-power one, which clearly results in a large high-temperature region between the gas inlet and cathode and unfavourable to reduce the cathode erosion and to increase thermal efficiency. |
doi_str_mv | 10.1016/j.compfluid.2011.01.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869583922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793011000156</els_id><sourcerecordid>1671622072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-28cf2804e2d678062fe236ac120359ea1a6961f497dad5ccb5424e532aebe08f3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK7-BnPTS4-VdHeSPi6LX7DiRc8hk1R2MySdNulZbX-9GUc8KhQUBc_7QPES8pLBngETb457m9Pi4ym4PQfG9tAG1COyY0pOHchBPiY7gGHs5NTDU_Ks1iO0u-fDjsRP2WEM8x2tKxq3UfMj1K5uKeFagqXrPZZkIl2iqclQH_N3mj01odBDg-liiomxGX6io8nczbjm7n5zJbttNqkZfkdqjg9YnpMn3sSKL_7sK_L13dsvNx-628_vP95c33a2V7B2XFnPFQzInZAKBPfIe2Es49CPExpmxCSYHybpjButPYwDH3DsucEDgvL9FXl18S4lfzthXXUK1WKMZsZ8qlqJaVT9xHkjX_-TZEIywTnIMyovqC251oJeLyUkUzbNQJ-b0Ef9twl9bkJDG1AteX1JYvv5IWDR1QacLbpQ0K7a5fBfxy8WcJgP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671622072</pqid></control><display><type>article</type><title>Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chau, S.W. ; Hsu, K.L.</creator><creatorcontrib>Chau, S.W. ; Hsu, K.L.</creatorcontrib><description>This paper discusses a parallelized magneto-hydrodynamic flow solver for modeling axis-symmetric thermal plasma flow using Cartesian grid system and taking the induced electrical and magnetic effects into account, where the magneto-hydrodynamic equations, including the continuity equation, momentum equations, energy equation, current continuity equation and turbulence transport equations are solved by a finite volume discretization in a segregated manner. The thermal plasma flow of a 476
mm long, transferred well-type plasma torch operating with air is simulated for two power conditions, i.e.
I
=
432
A and 901
A, to demonstrate the capability of proposed numerical model to analyze the heat and mass transfer characteristics of axis-symmetric thermal plasma flow, where the location of cathode is determined by fixing the measured voltage drop between two electrodes. The numerical calculation suggests that the high-power case can deliver an axial velocity of 400
m/s and 15,000
K in temperature at the center of torch outlet, where a strong jetting vortex is expected emitting from the torch body. The low-power case is predicted with a longer electric arc than that of the high-power one, which clearly results in a large high-temperature region between the gas inlet and cathode and unfavourable to reduce the cathode erosion and to increase thermal efficiency.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2011.01.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cathodes ; Computational fluid dynamics ; Fluid flow ; Magneto-hydrodynamic flow ; Mathematical analysis ; Mathematical models ; Numerical modeling ; Parallel computation ; Thermal plasma ; Thermal plasmas ; Transferred torch ; Turbulence ; Turbulent flow</subject><ispartof>Computers & fluids, 2011-06, Vol.45 (1), p.109-115</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-28cf2804e2d678062fe236ac120359ea1a6961f497dad5ccb5424e532aebe08f3</citedby><cites>FETCH-LOGICAL-c380t-28cf2804e2d678062fe236ac120359ea1a6961f497dad5ccb5424e532aebe08f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2011.01.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Chau, S.W.</creatorcontrib><creatorcontrib>Hsu, K.L.</creatorcontrib><title>Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver</title><title>Computers & fluids</title><description>This paper discusses a parallelized magneto-hydrodynamic flow solver for modeling axis-symmetric thermal plasma flow using Cartesian grid system and taking the induced electrical and magnetic effects into account, where the magneto-hydrodynamic equations, including the continuity equation, momentum equations, energy equation, current continuity equation and turbulence transport equations are solved by a finite volume discretization in a segregated manner. The thermal plasma flow of a 476
mm long, transferred well-type plasma torch operating with air is simulated for two power conditions, i.e.
I
=
432
A and 901
A, to demonstrate the capability of proposed numerical model to analyze the heat and mass transfer characteristics of axis-symmetric thermal plasma flow, where the location of cathode is determined by fixing the measured voltage drop between two electrodes. The numerical calculation suggests that the high-power case can deliver an axial velocity of 400
m/s and 15,000
K in temperature at the center of torch outlet, where a strong jetting vortex is expected emitting from the torch body. The low-power case is predicted with a longer electric arc than that of the high-power one, which clearly results in a large high-temperature region between the gas inlet and cathode and unfavourable to reduce the cathode erosion and to increase thermal efficiency.</description><subject>Cathodes</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Magneto-hydrodynamic flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical modeling</subject><subject>Parallel computation</subject><subject>Thermal plasma</subject><subject>Thermal plasmas</subject><subject>Transferred torch</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMoOK7-BnPTS4-VdHeSPi6LX7DiRc8hk1R2MySdNulZbX-9GUc8KhQUBc_7QPES8pLBngETb457m9Pi4ym4PQfG9tAG1COyY0pOHchBPiY7gGHs5NTDU_Ks1iO0u-fDjsRP2WEM8x2tKxq3UfMj1K5uKeFagqXrPZZkIl2iqclQH_N3mj01odBDg-liiomxGX6io8nczbjm7n5zJbttNqkZfkdqjg9YnpMn3sSKL_7sK_L13dsvNx-628_vP95c33a2V7B2XFnPFQzInZAKBPfIe2Es49CPExpmxCSYHybpjButPYwDH3DsucEDgvL9FXl18S4lfzthXXUK1WKMZsZ8qlqJaVT9xHkjX_-TZEIywTnIMyovqC251oJeLyUkUzbNQJ-b0Ef9twl9bkJDG1AteX1JYvv5IWDR1QacLbpQ0K7a5fBfxy8WcJgP</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Chau, S.W.</creator><creator>Hsu, K.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110601</creationdate><title>Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver</title><author>Chau, S.W. ; Hsu, K.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-28cf2804e2d678062fe236ac120359ea1a6961f497dad5ccb5424e532aebe08f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cathodes</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Magneto-hydrodynamic flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical modeling</topic><topic>Parallel computation</topic><topic>Thermal plasma</topic><topic>Thermal plasmas</topic><topic>Transferred torch</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chau, S.W.</creatorcontrib><creatorcontrib>Hsu, K.L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chau, S.W.</au><au>Hsu, K.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver</atitle><jtitle>Computers & fluids</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>45</volume><issue>1</issue><spage>109</spage><epage>115</epage><pages>109-115</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>This paper discusses a parallelized magneto-hydrodynamic flow solver for modeling axis-symmetric thermal plasma flow using Cartesian grid system and taking the induced electrical and magnetic effects into account, where the magneto-hydrodynamic equations, including the continuity equation, momentum equations, energy equation, current continuity equation and turbulence transport equations are solved by a finite volume discretization in a segregated manner. The thermal plasma flow of a 476
mm long, transferred well-type plasma torch operating with air is simulated for two power conditions, i.e.
I
=
432
A and 901
A, to demonstrate the capability of proposed numerical model to analyze the heat and mass transfer characteristics of axis-symmetric thermal plasma flow, where the location of cathode is determined by fixing the measured voltage drop between two electrodes. The numerical calculation suggests that the high-power case can deliver an axial velocity of 400
m/s and 15,000
K in temperature at the center of torch outlet, where a strong jetting vortex is expected emitting from the torch body. The low-power case is predicted with a longer electric arc than that of the high-power one, which clearly results in a large high-temperature region between the gas inlet and cathode and unfavourable to reduce the cathode erosion and to increase thermal efficiency.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2011.01.008</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2011-06, Vol.45 (1), p.109-115 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_miscellaneous_869583922 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Cathodes Computational fluid dynamics Fluid flow Magneto-hydrodynamic flow Mathematical analysis Mathematical models Numerical modeling Parallel computation Thermal plasma Thermal plasmas Transferred torch Turbulence Turbulent flow |
title | Modeling steady axis-symmetric thermal plasma flow of air by a parallelized magneto-hydrodynamic flow solver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20steady%20axis-symmetric%20thermal%20plasma%20flow%20of%20air%20by%20a%20parallelized%20magneto-hydrodynamic%20flow%20solver&rft.jtitle=Computers%20&%20fluids&rft.au=Chau,%20S.W.&rft.date=2011-06-01&rft.volume=45&rft.issue=1&rft.spage=109&rft.epage=115&rft.pages=109-115&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2011.01.008&rft_dat=%3Cproquest_cross%3E1671622072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671622072&rft_id=info:pmid/&rft_els_id=S0045793011000156&rfr_iscdi=true |