Droplet break-up by in-line Silverson rotor–stator mixer

Silverson high shear in-line rotor–stator mixers are widely applied in industry for the manufacture of emulsion-based products but the current understanding of droplet breakage and coalescence in these devices is limited. The aim of this paper is to increase the understanding of droplet break-up mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2011-05, Vol.66 (10), p.2068-2079
Hauptverfasser: Hall, S., Cooke, M., El-Hamouz, A., Kowalski, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2079
container_issue 10
container_start_page 2068
container_title Chemical engineering science
container_volume 66
creator Hall, S.
Cooke, M.
El-Hamouz, A.
Kowalski, A.J.
description Silverson high shear in-line rotor–stator mixers are widely applied in industry for the manufacture of emulsion-based products but the current understanding of droplet breakage and coalescence in these devices is limited. The aim of this paper is to increase the understanding of droplet break-up mechanisms and to identify appropriate literature correlations for in-line rotor–stator mixers. Silicone oils with viscosities ranging from 9.4 to 969 mPa s were emulsified with surfactant in an in-line Silverson at rotor speeds up to 11,000 rpm and flow rates up to 5 tonnes/h. The effect of rotor speed, flow rate, dispersed phase fraction up to 50 wt%, inlet drop size and viscosity ratio on droplet size was investigated. It was found that rotor speed and dispersed phase viscosity have a significant effect on the droplet size, while flow rate, inlet droplet size, viscosity ratio and dispersed phase volume have a lesser effect. The results indicate that low viscosity droplets are broken by turbulent inertial stresses, while droplets smaller than the Kolmogorov length scale are broken by a combination of inertial and viscous stresses. It also appears that the weak dependence of drop size on flow rate enables the energy efficiency of an in-line high shear Silverson to be significantly improved by operating at as high a flow rate as possible.
doi_str_mv 10.1016/j.ces.2011.01.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869583552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250911000741</els_id><sourcerecordid>1709787625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-c80a83e2d02940d16603215b85396b46d335c3f81daebf08864c5517de1f141a3</originalsourceid><addsrcrecordid>eNp9kM1qFEEQxxtRcE18AE_ORfQym6r-Hj2FJH5AwEPMuenpqZFeZ6fX7tlgbr5D3jBPYocNHgMFVQW_-lP8GHuDsEZAfbJZByprDohrqKXkM7ZCa0QrJajnbAUAXcsVdC_Zq1I2dTUGYcU-nue0m2hp-kz-V7vfNf1tE-d2ijM1V3G6oVzS3OS0pHz_964svg7NNv6hfMxejH4q9PqxH7Hrzxc_zr62l9-_fDs7vWyDRL20wYK3gvgAvJMwoNYgOKreKtHpXupBCBXEaHHw1I9grZZBKTQD4YgSvThi7w-5u5x-76ksbhtLoGnyM6V9cVZ3ygqleCU_PEmigc5Yo7mqKB7QkFMpmUa3y3Hr861DcA9G3cZVo-7BqINaStabd4_xvgQ_jdnPIZb_h1yCBsNt5d4euNEn53_mylxf1SBVrXOrjKjEpwNB1dtNpOxKiDQHGmKmsLghxSf--Aco95Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709787625</pqid></control><display><type>article</type><title>Droplet break-up by in-line Silverson rotor–stator mixer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hall, S. ; Cooke, M. ; El-Hamouz, A. ; Kowalski, A.J.</creator><creatorcontrib>Hall, S. ; Cooke, M. ; El-Hamouz, A. ; Kowalski, A.J.</creatorcontrib><description>Silverson high shear in-line rotor–stator mixers are widely applied in industry for the manufacture of emulsion-based products but the current understanding of droplet breakage and coalescence in these devices is limited. The aim of this paper is to increase the understanding of droplet break-up mechanisms and to identify appropriate literature correlations for in-line rotor–stator mixers. Silicone oils with viscosities ranging from 9.4 to 969 mPa s were emulsified with surfactant in an in-line Silverson at rotor speeds up to 11,000 rpm and flow rates up to 5 tonnes/h. The effect of rotor speed, flow rate, dispersed phase fraction up to 50 wt%, inlet drop size and viscosity ratio on droplet size was investigated. It was found that rotor speed and dispersed phase viscosity have a significant effect on the droplet size, while flow rate, inlet droplet size, viscosity ratio and dispersed phase volume have a lesser effect. The results indicate that low viscosity droplets are broken by turbulent inertial stresses, while droplets smaller than the Kolmogorov length scale are broken by a combination of inertial and viscous stresses. It also appears that the weak dependence of drop size on flow rate enables the energy efficiency of an in-line high shear Silverson to be significantly improved by operating at as high a flow rate as possible.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2011.01.054</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Chemistry ; Colloidal state and disperse state ; Dispersion ; droplet size ; Droplets ; Emulsification ; Emulsion ; Energy dissipation rate ; energy efficiency ; Exact sciences and technology ; Flow rate ; General and physical chemistry ; manufacturing ; Mixers ; Mixing ; oils ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Rotor speed ; Rotors ; Rotor–stator mixer ; Scale-up ; silicone ; Stators ; surfactants ; Viscosity</subject><ispartof>Chemical engineering science, 2011-05, Vol.66 (10), p.2068-2079</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-c80a83e2d02940d16603215b85396b46d335c3f81daebf08864c5517de1f141a3</citedby><cites>FETCH-LOGICAL-c416t-c80a83e2d02940d16603215b85396b46d335c3f81daebf08864c5517de1f141a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2011.01.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24060728$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, S.</creatorcontrib><creatorcontrib>Cooke, M.</creatorcontrib><creatorcontrib>El-Hamouz, A.</creatorcontrib><creatorcontrib>Kowalski, A.J.</creatorcontrib><title>Droplet break-up by in-line Silverson rotor–stator mixer</title><title>Chemical engineering science</title><description>Silverson high shear in-line rotor–stator mixers are widely applied in industry for the manufacture of emulsion-based products but the current understanding of droplet breakage and coalescence in these devices is limited. The aim of this paper is to increase the understanding of droplet break-up mechanisms and to identify appropriate literature correlations for in-line rotor–stator mixers. Silicone oils with viscosities ranging from 9.4 to 969 mPa s were emulsified with surfactant in an in-line Silverson at rotor speeds up to 11,000 rpm and flow rates up to 5 tonnes/h. The effect of rotor speed, flow rate, dispersed phase fraction up to 50 wt%, inlet drop size and viscosity ratio on droplet size was investigated. It was found that rotor speed and dispersed phase viscosity have a significant effect on the droplet size, while flow rate, inlet droplet size, viscosity ratio and dispersed phase volume have a lesser effect. The results indicate that low viscosity droplets are broken by turbulent inertial stresses, while droplets smaller than the Kolmogorov length scale are broken by a combination of inertial and viscous stresses. It also appears that the weak dependence of drop size on flow rate enables the energy efficiency of an in-line high shear Silverson to be significantly improved by operating at as high a flow rate as possible.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Dispersion</subject><subject>droplet size</subject><subject>Droplets</subject><subject>Emulsification</subject><subject>Emulsion</subject><subject>Energy dissipation rate</subject><subject>energy efficiency</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>General and physical chemistry</subject><subject>manufacturing</subject><subject>Mixers</subject><subject>Mixing</subject><subject>oils</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Rotor speed</subject><subject>Rotors</subject><subject>Rotor–stator mixer</subject><subject>Scale-up</subject><subject>silicone</subject><subject>Stators</subject><subject>surfactants</subject><subject>Viscosity</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qFEEQxxtRcE18AE_ORfQym6r-Hj2FJH5AwEPMuenpqZFeZ6fX7tlgbr5D3jBPYocNHgMFVQW_-lP8GHuDsEZAfbJZByprDohrqKXkM7ZCa0QrJajnbAUAXcsVdC_Zq1I2dTUGYcU-nue0m2hp-kz-V7vfNf1tE-d2ijM1V3G6oVzS3OS0pHz_964svg7NNv6hfMxejH4q9PqxH7Hrzxc_zr62l9-_fDs7vWyDRL20wYK3gvgAvJMwoNYgOKreKtHpXupBCBXEaHHw1I9grZZBKTQD4YgSvThi7w-5u5x-76ksbhtLoGnyM6V9cVZ3ygqleCU_PEmigc5Yo7mqKB7QkFMpmUa3y3Hr861DcA9G3cZVo-7BqINaStabd4_xvgQ_jdnPIZb_h1yCBsNt5d4euNEn53_mylxf1SBVrXOrjKjEpwNB1dtNpOxKiDQHGmKmsLghxSf--Aco95Mg</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Hall, S.</creator><creator>Cooke, M.</creator><creator>El-Hamouz, A.</creator><creator>Kowalski, A.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>20110515</creationdate><title>Droplet break-up by in-line Silverson rotor–stator mixer</title><author>Hall, S. ; Cooke, M. ; El-Hamouz, A. ; Kowalski, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-c80a83e2d02940d16603215b85396b46d335c3f81daebf08864c5517de1f141a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Dispersion</topic><topic>droplet size</topic><topic>Droplets</topic><topic>Emulsification</topic><topic>Emulsion</topic><topic>Energy dissipation rate</topic><topic>energy efficiency</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>General and physical chemistry</topic><topic>manufacturing</topic><topic>Mixers</topic><topic>Mixing</topic><topic>oils</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Rotor speed</topic><topic>Rotors</topic><topic>Rotor–stator mixer</topic><topic>Scale-up</topic><topic>silicone</topic><topic>Stators</topic><topic>surfactants</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, S.</creatorcontrib><creatorcontrib>Cooke, M.</creatorcontrib><creatorcontrib>El-Hamouz, A.</creatorcontrib><creatorcontrib>Kowalski, A.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, S.</au><au>Cooke, M.</au><au>El-Hamouz, A.</au><au>Kowalski, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet break-up by in-line Silverson rotor–stator mixer</atitle><jtitle>Chemical engineering science</jtitle><date>2011-05-15</date><risdate>2011</risdate><volume>66</volume><issue>10</issue><spage>2068</spage><epage>2079</epage><pages>2068-2079</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Silverson high shear in-line rotor–stator mixers are widely applied in industry for the manufacture of emulsion-based products but the current understanding of droplet breakage and coalescence in these devices is limited. The aim of this paper is to increase the understanding of droplet break-up mechanisms and to identify appropriate literature correlations for in-line rotor–stator mixers. Silicone oils with viscosities ranging from 9.4 to 969 mPa s were emulsified with surfactant in an in-line Silverson at rotor speeds up to 11,000 rpm and flow rates up to 5 tonnes/h. The effect of rotor speed, flow rate, dispersed phase fraction up to 50 wt%, inlet drop size and viscosity ratio on droplet size was investigated. It was found that rotor speed and dispersed phase viscosity have a significant effect on the droplet size, while flow rate, inlet droplet size, viscosity ratio and dispersed phase volume have a lesser effect. The results indicate that low viscosity droplets are broken by turbulent inertial stresses, while droplets smaller than the Kolmogorov length scale are broken by a combination of inertial and viscous stresses. It also appears that the weak dependence of drop size on flow rate enables the energy efficiency of an in-line high shear Silverson to be significantly improved by operating at as high a flow rate as possible.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2011.01.054</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2011-05, Vol.66 (10), p.2068-2079
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_869583552
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Chemical engineering
Chemistry
Colloidal state and disperse state
Dispersion
droplet size
Droplets
Emulsification
Emulsion
Energy dissipation rate
energy efficiency
Exact sciences and technology
Flow rate
General and physical chemistry
manufacturing
Mixers
Mixing
oils
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Rotor speed
Rotors
Rotor–stator mixer
Scale-up
silicone
Stators
surfactants
Viscosity
title Droplet break-up by in-line Silverson rotor–stator mixer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20break-up%20by%20in-line%20Silverson%20rotor%E2%80%93stator%20mixer&rft.jtitle=Chemical%20engineering%20science&rft.au=Hall,%20S.&rft.date=2011-05-15&rft.volume=66&rft.issue=10&rft.spage=2068&rft.epage=2079&rft.pages=2068-2079&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2011.01.054&rft_dat=%3Cproquest_cross%3E1709787625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709787625&rft_id=info:pmid/&rft_els_id=S0009250911000741&rfr_iscdi=true