Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem

► We model a multi-objective portfolio optimization problem. ► Particle Swarm Optimization (PSO) algorithm has been used to solve the problem. ► The PSO model is tested on various risk investment portfolios. ► The results show that the PSO model are more effective than GAs and VBA solvers. One of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2011-08, Vol.38 (8), p.10161-10169
Hauptverfasser: Zhu, Hanhong, Wang, Yi, Wang, Kesheng, Chen, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10169
container_issue 8
container_start_page 10161
container_title Expert systems with applications
container_volume 38
creator Zhu, Hanhong
Wang, Yi
Wang, Kesheng
Chen, Yun
description ► We model a multi-objective portfolio optimization problem. ► Particle Swarm Optimization (PSO) algorithm has been used to solve the problem. ► The PSO model is tested on various risk investment portfolios. ► The results show that the PSO model are more effective than GAs and VBA solvers. One of the most studied problems in the financial investment expert system is the intractability of portfolios. The non-linear constrained portfolio optimization problem with multi-objective functions cannot be efficiently solved using traditionally approaches. This paper presents a meta-heuristic approach to portfolio optimization problem using Particle Swarm Optimization (PSO) technique. The model is tested on various restricted and unrestricted risky investment portfolios and a comparative study with Genetic Algorithms is implemented. The PSO model demonstrates high computational efficiency in constructing optimal risky portfolios. Preliminary results show that the approach is very promising and achieves results comparable or superior with the state of the art solvers.
doi_str_mv 10.1016/j.eswa.2011.02.075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869583418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411002818</els_id><sourcerecordid>1700991044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-2b55e58d4206f4921f010ad7086abcaeb7a8e1fdf7ca7ddb6e2831be9c7c16483</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU-9qYfWmTZtWvAi4hcsrKCeQ5pOMUvbrEnWRX-9LevB057m8t4M8xg7R0gQsLheJeS3KkkBMYE0AZEfsBmWIosLUWWHbAZVLmKOgh-zE-9XACgAxIy9vSgXjO4oet0q10fLdTC9-VHB2CG6fHldXkWtdVH4oEjbwQenzEBNtLYutLYzNrL_hbWzdUf9KTtqVefp7G_O2fvD_dvdU7xYPj7f3S5izTMMcVrnOeVlw1MoWl6l2AKCagSUhaq1olqokrBtWqGVaJq6oLTMsKZKC40FL7M5u9jtHe9-bsgH2RuvqevUQHbjZVlUeZlxnMjLveRUo6oQOB_RdIdqZ7131Mq1M71y3xJBTrHlSk6x5RRbQirH2KN0s5NofPfLkJNeGxo0NcaRDrKxZp_-CwrLiVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700991044</pqid></control><display><type>article</type><title>Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Hanhong ; Wang, Yi ; Wang, Kesheng ; Chen, Yun</creator><creatorcontrib>Zhu, Hanhong ; Wang, Yi ; Wang, Kesheng ; Chen, Yun</creatorcontrib><description>► We model a multi-objective portfolio optimization problem. ► Particle Swarm Optimization (PSO) algorithm has been used to solve the problem. ► The PSO model is tested on various risk investment portfolios. ► The results show that the PSO model are more effective than GAs and VBA solvers. One of the most studied problems in the financial investment expert system is the intractability of portfolios. The non-linear constrained portfolio optimization problem with multi-objective functions cannot be efficiently solved using traditionally approaches. This paper presents a meta-heuristic approach to portfolio optimization problem using Particle Swarm Optimization (PSO) technique. The model is tested on various restricted and unrestricted risky investment portfolios and a comparative study with Genetic Algorithms is implemented. The PSO model demonstrates high computational efficiency in constructing optimal risky portfolios. Preliminary results show that the approach is very promising and achieves results comparable or superior with the state of the art solvers.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.02.075</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational efficiency ; Constraints ; Expert system ; Expert systems ; Financing ; Investment ; Optimal portfolio ; Optimization ; Particle Swarm Optimization (PSO) ; Portfolio management (PM) ; Sharp Ratio (SR) ; Solvers ; Swarm Intelligence (SI)</subject><ispartof>Expert systems with applications, 2011-08, Vol.38 (8), p.10161-10169</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-2b55e58d4206f4921f010ad7086abcaeb7a8e1fdf7ca7ddb6e2831be9c7c16483</citedby><cites>FETCH-LOGICAL-c431t-2b55e58d4206f4921f010ad7086abcaeb7a8e1fdf7ca7ddb6e2831be9c7c16483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417411002818$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhu, Hanhong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Wang, Kesheng</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><title>Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem</title><title>Expert systems with applications</title><description>► We model a multi-objective portfolio optimization problem. ► Particle Swarm Optimization (PSO) algorithm has been used to solve the problem. ► The PSO model is tested on various risk investment portfolios. ► The results show that the PSO model are more effective than GAs and VBA solvers. One of the most studied problems in the financial investment expert system is the intractability of portfolios. The non-linear constrained portfolio optimization problem with multi-objective functions cannot be efficiently solved using traditionally approaches. This paper presents a meta-heuristic approach to portfolio optimization problem using Particle Swarm Optimization (PSO) technique. The model is tested on various restricted and unrestricted risky investment portfolios and a comparative study with Genetic Algorithms is implemented. The PSO model demonstrates high computational efficiency in constructing optimal risky portfolios. Preliminary results show that the approach is very promising and achieves results comparable or superior with the state of the art solvers.</description><subject>Computational efficiency</subject><subject>Constraints</subject><subject>Expert system</subject><subject>Expert systems</subject><subject>Financing</subject><subject>Investment</subject><subject>Optimal portfolio</subject><subject>Optimization</subject><subject>Particle Swarm Optimization (PSO)</subject><subject>Portfolio management (PM)</subject><subject>Sharp Ratio (SR)</subject><subject>Solvers</subject><subject>Swarm Intelligence (SI)</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU-9qYfWmTZtWvAi4hcsrKCeQ5pOMUvbrEnWRX-9LevB057m8t4M8xg7R0gQsLheJeS3KkkBMYE0AZEfsBmWIosLUWWHbAZVLmKOgh-zE-9XACgAxIy9vSgXjO4oet0q10fLdTC9-VHB2CG6fHldXkWtdVH4oEjbwQenzEBNtLYutLYzNrL_hbWzdUf9KTtqVefp7G_O2fvD_dvdU7xYPj7f3S5izTMMcVrnOeVlw1MoWl6l2AKCagSUhaq1olqokrBtWqGVaJq6oLTMsKZKC40FL7M5u9jtHe9-bsgH2RuvqevUQHbjZVlUeZlxnMjLveRUo6oQOB_RdIdqZ7131Mq1M71y3xJBTrHlSk6x5RRbQirH2KN0s5NofPfLkJNeGxo0NcaRDrKxZp_-CwrLiVM</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Zhu, Hanhong</creator><creator>Wang, Yi</creator><creator>Wang, Kesheng</creator><creator>Chen, Yun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem</title><author>Zhu, Hanhong ; Wang, Yi ; Wang, Kesheng ; Chen, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-2b55e58d4206f4921f010ad7086abcaeb7a8e1fdf7ca7ddb6e2831be9c7c16483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational efficiency</topic><topic>Constraints</topic><topic>Expert system</topic><topic>Expert systems</topic><topic>Financing</topic><topic>Investment</topic><topic>Optimal portfolio</topic><topic>Optimization</topic><topic>Particle Swarm Optimization (PSO)</topic><topic>Portfolio management (PM)</topic><topic>Sharp Ratio (SR)</topic><topic>Solvers</topic><topic>Swarm Intelligence (SI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hanhong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Wang, Kesheng</creatorcontrib><creatorcontrib>Chen, Yun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hanhong</au><au>Wang, Yi</au><au>Wang, Kesheng</au><au>Chen, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem</atitle><jtitle>Expert systems with applications</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>38</volume><issue>8</issue><spage>10161</spage><epage>10169</epage><pages>10161-10169</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► We model a multi-objective portfolio optimization problem. ► Particle Swarm Optimization (PSO) algorithm has been used to solve the problem. ► The PSO model is tested on various risk investment portfolios. ► The results show that the PSO model are more effective than GAs and VBA solvers. One of the most studied problems in the financial investment expert system is the intractability of portfolios. The non-linear constrained portfolio optimization problem with multi-objective functions cannot be efficiently solved using traditionally approaches. This paper presents a meta-heuristic approach to portfolio optimization problem using Particle Swarm Optimization (PSO) technique. The model is tested on various restricted and unrestricted risky investment portfolios and a comparative study with Genetic Algorithms is implemented. The PSO model demonstrates high computational efficiency in constructing optimal risky portfolios. Preliminary results show that the approach is very promising and achieves results comparable or superior with the state of the art solvers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.02.075</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2011-08, Vol.38 (8), p.10161-10169
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_869583418
source Elsevier ScienceDirect Journals
subjects Computational efficiency
Constraints
Expert system
Expert systems
Financing
Investment
Optimal portfolio
Optimization
Particle Swarm Optimization (PSO)
Portfolio management (PM)
Sharp Ratio (SR)
Solvers
Swarm Intelligence (SI)
title Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Swarm%20Optimization%20(PSO)%20for%20the%20constrained%20portfolio%20optimization%20problem&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Zhu,%20Hanhong&rft.date=2011-08-01&rft.volume=38&rft.issue=8&rft.spage=10161&rft.epage=10169&rft.pages=10161-10169&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.02.075&rft_dat=%3Cproquest_cross%3E1700991044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700991044&rft_id=info:pmid/&rft_els_id=S0957417411002818&rfr_iscdi=true