Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells

The electronic energy transfer properties between Ho 3+ and Yb 3+ ions have been studied in a fluoroindate glass for solar cell applications. The Ho 3+ ions absorb infrared radiation at around 1150 nm, below the energy gap of Si solar cells. Energy transfer between Ho 3+ and Yb 3+ ions produces an u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2011-07, Vol.95 (7), p.1671-1677
Hauptverfasser: Lahoz, F., Pérez-Rodríguez, C., Hernández, S.E., Martín, I.R., Lavín, V., Rodríguez-Mendoza, U.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1677
container_issue 7
container_start_page 1671
container_title Solar energy materials and solar cells
container_volume 95
creator Lahoz, F.
Pérez-Rodríguez, C.
Hernández, S.E.
Martín, I.R.
Lavín, V.
Rodríguez-Mendoza, U.R.
description The electronic energy transfer properties between Ho 3+ and Yb 3+ ions have been studied in a fluoroindate glass for solar cell applications. The Ho 3+ ions absorb infrared radiation at around 1150 nm, below the energy gap of Si solar cells. Energy transfer between Ho 3+ and Yb 3+ ions produces an upconversion emission in the visible and in the near infrared spectral range just above the Si bandgap. When these glasses are placed at the rear of a bifacial Si solar cell, the upconverted radiation can be absorbed by Si and generate electron–hole pairs that contribute to enhance the cell efficiency. An estimation of the expected increase in photo-current has been calculated when the upconverter material is used in a solar concentrator. Besides, they can be used alone or together with other Er 3+ doped phosphors for the same purpose. The Ho 3+–Yb 3+ upconversion emission characteristics have been investigated as a function of the doping ion concentrations. Excitation, pump power dependency and dynamic experiments have been performed to determine the electronic energy transfer mechanism that is responsible of the upconversion. A rate equation analysis shows a reasonable agreement between the model and the experimental data. [Display omitted] ► Ho 3+ and Yb 3+ co-doped glasses transform IR radiation through upconversion processes. ► Two and three-photon processes are responsible of the UC emission. ► Enhancement of efficiency through upconversion requires solar cell concentrators. ► High UC efficiency is required for significant enhancement of solar efficiency.
doi_str_mv 10.1016/j.solmat.2011.01.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_869578637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024811000419</els_id><sourcerecordid>869578637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f19171548aa604777a7096fd287c156d4c379df6d7a55884f81062c4665407ec3</originalsourceid><addsrcrecordid>eNp9kLFqHDEQhkVIIBfHb5BCTUiaPY-0WknbBIKJE4MhTVwLIY18OnZXF836wG8fXc64NAyo-TT_Px9jnwRsBQh9td9SmWa_biUIsYU20rxhG2HN2PX9aN-yDYzSdCCVfc8-EO0BQOpebVi8P4SyHLFSLgufMez8kmkmnhdefcUOfV13PJYDRv4weSIkvhae50MtR-TrDjmmlEPGJTzxkjjlKbeVvFXylQecJvrI3iU_EV4-vxfs_ubHn-tf3d3vn7fX3--6oECsXRKjMGJQ1nsNyhjjDYw6RWlNEIOOKvRmjElH44fBWpWsAC2D0npQYDD0F-zLeW_r9vcRaXVzplMDv2B5JGf1OBire9PIr6-SoqXDqAYhGqrOaKiFqGJyh5pnX5-cAHfS7_burN-d9DtoI08Jn58TPAU_peqXkOnlr1TtVKl0476dOWxijhmro_8uMeaKYXWx5NeD_gEoepzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777094511</pqid></control><display><type>article</type><title>Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Lahoz, F. ; Pérez-Rodríguez, C. ; Hernández, S.E. ; Martín, I.R. ; Lavín, V. ; Rodríguez-Mendoza, U.R.</creator><creatorcontrib>Lahoz, F. ; Pérez-Rodríguez, C. ; Hernández, S.E. ; Martín, I.R. ; Lavín, V. ; Rodríguez-Mendoza, U.R.</creatorcontrib><description>The electronic energy transfer properties between Ho 3+ and Yb 3+ ions have been studied in a fluoroindate glass for solar cell applications. The Ho 3+ ions absorb infrared radiation at around 1150 nm, below the energy gap of Si solar cells. Energy transfer between Ho 3+ and Yb 3+ ions produces an upconversion emission in the visible and in the near infrared spectral range just above the Si bandgap. When these glasses are placed at the rear of a bifacial Si solar cell, the upconverted radiation can be absorbed by Si and generate electron–hole pairs that contribute to enhance the cell efficiency. An estimation of the expected increase in photo-current has been calculated when the upconverter material is used in a solar concentrator. Besides, they can be used alone or together with other Er 3+ doped phosphors for the same purpose. The Ho 3+–Yb 3+ upconversion emission characteristics have been investigated as a function of the doping ion concentrations. Excitation, pump power dependency and dynamic experiments have been performed to determine the electronic energy transfer mechanism that is responsible of the upconversion. A rate equation analysis shows a reasonable agreement between the model and the experimental data. [Display omitted] ► Ho 3+ and Yb 3+ co-doped glasses transform IR radiation through upconversion processes. ► Two and three-photon processes are responsible of the UC emission. ► Enhancement of efficiency through upconversion requires solar cell concentrators. ► High UC efficiency is required for significant enhancement of solar efficiency.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2011.01.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Convertors ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Energy ; Energy transfer ; Exact sciences and technology ; Glass ; Holmium ; Mathematical models ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; Rare earth metals ; Silicon ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar collectors ; Solar energy ; Solar thermal conversion ; Upconversion ; Ytterbium</subject><ispartof>Solar energy materials and solar cells, 2011-07, Vol.95 (7), p.1671-1677</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-f19171548aa604777a7096fd287c156d4c379df6d7a55884f81062c4665407ec3</citedby><cites>FETCH-LOGICAL-c401t-f19171548aa604777a7096fd287c156d4c379df6d7a55884f81062c4665407ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024811000419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24171246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lahoz, F.</creatorcontrib><creatorcontrib>Pérez-Rodríguez, C.</creatorcontrib><creatorcontrib>Hernández, S.E.</creatorcontrib><creatorcontrib>Martín, I.R.</creatorcontrib><creatorcontrib>Lavín, V.</creatorcontrib><creatorcontrib>Rodríguez-Mendoza, U.R.</creatorcontrib><title>Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells</title><title>Solar energy materials and solar cells</title><description>The electronic energy transfer properties between Ho 3+ and Yb 3+ ions have been studied in a fluoroindate glass for solar cell applications. The Ho 3+ ions absorb infrared radiation at around 1150 nm, below the energy gap of Si solar cells. Energy transfer between Ho 3+ and Yb 3+ ions produces an upconversion emission in the visible and in the near infrared spectral range just above the Si bandgap. When these glasses are placed at the rear of a bifacial Si solar cell, the upconverted radiation can be absorbed by Si and generate electron–hole pairs that contribute to enhance the cell efficiency. An estimation of the expected increase in photo-current has been calculated when the upconverter material is used in a solar concentrator. Besides, they can be used alone or together with other Er 3+ doped phosphors for the same purpose. The Ho 3+–Yb 3+ upconversion emission characteristics have been investigated as a function of the doping ion concentrations. Excitation, pump power dependency and dynamic experiments have been performed to determine the electronic energy transfer mechanism that is responsible of the upconversion. A rate equation analysis shows a reasonable agreement between the model and the experimental data. [Display omitted] ► Ho 3+ and Yb 3+ co-doped glasses transform IR radiation through upconversion processes. ► Two and three-photon processes are responsible of the UC emission. ► Enhancement of efficiency through upconversion requires solar cell concentrators. ► High UC efficiency is required for significant enhancement of solar efficiency.</description><subject>Applied sciences</subject><subject>Convertors</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Holmium</subject><subject>Mathematical models</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Rare earth metals</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Upconversion</subject><subject>Ytterbium</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLFqHDEQhkVIIBfHb5BCTUiaPY-0WknbBIKJE4MhTVwLIY18OnZXF836wG8fXc64NAyo-TT_Px9jnwRsBQh9td9SmWa_biUIsYU20rxhG2HN2PX9aN-yDYzSdCCVfc8-EO0BQOpebVi8P4SyHLFSLgufMez8kmkmnhdefcUOfV13PJYDRv4weSIkvhae50MtR-TrDjmmlEPGJTzxkjjlKbeVvFXylQecJvrI3iU_EV4-vxfs_ubHn-tf3d3vn7fX3--6oECsXRKjMGJQ1nsNyhjjDYw6RWlNEIOOKvRmjElH44fBWpWsAC2D0npQYDD0F-zLeW_r9vcRaXVzplMDv2B5JGf1OBire9PIr6-SoqXDqAYhGqrOaKiFqGJyh5pnX5-cAHfS7_burN-d9DtoI08Jn58TPAU_peqXkOnlr1TtVKl0476dOWxijhmro_8uMeaKYXWx5NeD_gEoepzW</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lahoz, F.</creator><creator>Pérez-Rodríguez, C.</creator><creator>Hernández, S.E.</creator><creator>Martín, I.R.</creator><creator>Lavín, V.</creator><creator>Rodríguez-Mendoza, U.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20110701</creationdate><title>Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells</title><author>Lahoz, F. ; Pérez-Rodríguez, C. ; Hernández, S.E. ; Martín, I.R. ; Lavín, V. ; Rodríguez-Mendoza, U.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f19171548aa604777a7096fd287c156d4c379df6d7a55884f81062c4665407ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Convertors</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Holmium</topic><topic>Mathematical models</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Rare earth metals</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Upconversion</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahoz, F.</creatorcontrib><creatorcontrib>Pérez-Rodríguez, C.</creatorcontrib><creatorcontrib>Hernández, S.E.</creatorcontrib><creatorcontrib>Martín, I.R.</creatorcontrib><creatorcontrib>Lavín, V.</creatorcontrib><creatorcontrib>Rodríguez-Mendoza, U.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahoz, F.</au><au>Pérez-Rodríguez, C.</au><au>Hernández, S.E.</au><au>Martín, I.R.</au><au>Lavín, V.</au><au>Rodríguez-Mendoza, U.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>95</volume><issue>7</issue><spage>1671</spage><epage>1677</epage><pages>1671-1677</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>The electronic energy transfer properties between Ho 3+ and Yb 3+ ions have been studied in a fluoroindate glass for solar cell applications. The Ho 3+ ions absorb infrared radiation at around 1150 nm, below the energy gap of Si solar cells. Energy transfer between Ho 3+ and Yb 3+ ions produces an upconversion emission in the visible and in the near infrared spectral range just above the Si bandgap. When these glasses are placed at the rear of a bifacial Si solar cell, the upconverted radiation can be absorbed by Si and generate electron–hole pairs that contribute to enhance the cell efficiency. An estimation of the expected increase in photo-current has been calculated when the upconverter material is used in a solar concentrator. Besides, they can be used alone or together with other Er 3+ doped phosphors for the same purpose. The Ho 3+–Yb 3+ upconversion emission characteristics have been investigated as a function of the doping ion concentrations. Excitation, pump power dependency and dynamic experiments have been performed to determine the electronic energy transfer mechanism that is responsible of the upconversion. A rate equation analysis shows a reasonable agreement between the model and the experimental data. [Display omitted] ► Ho 3+ and Yb 3+ co-doped glasses transform IR radiation through upconversion processes. ► Two and three-photon processes are responsible of the UC emission. ► Enhancement of efficiency through upconversion requires solar cell concentrators. ► High UC efficiency is required for significant enhancement of solar efficiency.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2011.01.027</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2011-07, Vol.95 (7), p.1671-1677
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_869578637
source Elsevier ScienceDirect Journals
subjects Applied sciences
Convertors
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
Energy
Energy transfer
Exact sciences and technology
Glass
Holmium
Mathematical models
Natural energy
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
Rare earth metals
Silicon
Solar cells
Solar cells. Photoelectrochemical cells
Solar collectors
Solar energy
Solar thermal conversion
Upconversion
Ytterbium
title Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upconversion%20mechanisms%20in%20rare-earth%20doped%20glasses%20to%20improve%20the%20efficiency%20of%20silicon%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Lahoz,%20F.&rft.date=2011-07-01&rft.volume=95&rft.issue=7&rft.spage=1671&rft.epage=1677&rft.pages=1671-1677&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2011.01.027&rft_dat=%3Cproquest_cross%3E869578637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777094511&rft_id=info:pmid/&rft_els_id=S0927024811000419&rfr_iscdi=true