Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previou...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (21), p.8791-8796 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8796 |
---|---|
container_issue | 21 |
container_start_page | 8791 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Li, Da-Qiang Pakala, Suresh B. Reddy, Sirigiri Divijendra Natha Ohshiro, Kazufumi Zhang, Jun-Xiang Wang, Lei Zhang, Yanping de Alborán, Ignacio Moreno Pillai, M. Radhakrishna Eswaran, Jeyanthy Kumar, Rakesh |
description | Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment. |
doi_str_mv | 10.1073/pnas.1018389108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_868768470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25831031</jstor_id><sourcerecordid>25831031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</originalsourceid><addsrcrecordid>eNpdkc2P1CAYh4lx446rZ09q48VT3ZcCLVxMdKPuJpt40TN529IZJi1UoGvGv17GGXdWCQkQnvfh40fICwrvKDTscnYY84xKJhUF-YisKCha1lzBY7ICqJpS8oqfk6cxbgFACQlPyHlFRW5Srcivj7a3wXTJeodjgUvywayXEfO4KybTbdDZOBV-yIuEMXcbS4zRdxaT6Ys5-GSsK2iJYzLBYbJ3pggGe-vWxRBwMsWMafMTd0XGvOv82jiTLc_I2YBjNM-P4wX5_vnTt6vr8vbrl5urD7dlx2uRStVjXSvBQAJva9EOUnGJcmBctB2vJGMNgBxaDihaxWGohGAItYCqbquhZxfk_cE7L-1k-s64FHDUc7AThp32aPW_O85u9NrfaUahyqdkwdujIPgfi4lJTzZ2ZhzRGb9ELWvZ1JI3kMk3_5Fbv-Q_Gf9AinKp9rrLA9QFH2Mww_1VKOh9qnqfqj6lmitePXzBPf83xgy8PgL7ypNOZkTLRtFMvDwQ25iTPRmEzK9klP0Gpam0vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868914895</pqid></control><display><type>article</type><title>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Da-Qiang ; Pakala, Suresh B. ; Reddy, Sirigiri Divijendra Natha ; Ohshiro, Kazufumi ; Zhang, Jun-Xiang ; Wang, Lei ; Zhang, Yanping ; de Alborán, Ignacio Moreno ; Pillai, M. Radhakrishna ; Eswaran, Jeyanthy ; Kumar, Rakesh</creator><creatorcontrib>Li, Da-Qiang ; Pakala, Suresh B. ; Reddy, Sirigiri Divijendra Natha ; Ohshiro, Kazufumi ; Zhang, Jun-Xiang ; Wang, Lei ; Zhang, Yanping ; de Alborán, Ignacio Moreno ; Pillai, M. Radhakrishna ; Eswaran, Jeyanthy ; Kumar, Rakesh</creatorcontrib><description>Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1018389108</identifier><identifier>PMID: 21555589</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antibodies ; Biological Sciences ; Cancer ; Cell Line ; Cells ; Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors ; Cyclin-Dependent Kinase Inhibitor p16 - genetics ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; DNA ; Down regulation ; Epithelial cells ; Gene Expression Regulation ; Genes ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Homeostasis ; Homeostasis - genetics ; Humans ; Metastasis ; Neoplasms - etiology ; Promoter regions ; Proteins ; Reading Frames ; Repressor Proteins - antagonists & inhibitors ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Trans-Activators ; Transcription factors ; Transcriptional Activation ; Tumor Suppressor Protein p53 ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (21), p.8791-8796</ispartof><rights>Copyright National Academy of Sciences May 24, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</citedby><cites>FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25831031$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25831031$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21555589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Da-Qiang</creatorcontrib><creatorcontrib>Pakala, Suresh B.</creatorcontrib><creatorcontrib>Reddy, Sirigiri Divijendra Natha</creatorcontrib><creatorcontrib>Ohshiro, Kazufumi</creatorcontrib><creatorcontrib>Zhang, Jun-Xiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Yanping</creatorcontrib><creatorcontrib>de Alborán, Ignacio Moreno</creatorcontrib><creatorcontrib>Pillai, M. Radhakrishna</creatorcontrib><creatorcontrib>Eswaran, Jeyanthy</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><title>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.</description><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>DNA</subject><subject>Down regulation</subject><subject>Epithelial cells</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Humans</subject><subject>Metastasis</subject><subject>Neoplasms - etiology</subject><subject>Promoter regions</subject><subject>Proteins</subject><subject>Reading Frames</subject><subject>Repressor Proteins - antagonists & inhibitors</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Trans-Activators</subject><subject>Transcription factors</subject><subject>Transcriptional Activation</subject><subject>Tumor Suppressor Protein p53</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2P1CAYh4lx446rZ09q48VT3ZcCLVxMdKPuJpt40TN529IZJi1UoGvGv17GGXdWCQkQnvfh40fICwrvKDTscnYY84xKJhUF-YisKCha1lzBY7ICqJpS8oqfk6cxbgFACQlPyHlFRW5Srcivj7a3wXTJeodjgUvywayXEfO4KybTbdDZOBV-yIuEMXcbS4zRdxaT6Ys5-GSsK2iJYzLBYbJ3pggGe-vWxRBwMsWMafMTd0XGvOv82jiTLc_I2YBjNM-P4wX5_vnTt6vr8vbrl5urD7dlx2uRStVjXSvBQAJva9EOUnGJcmBctB2vJGMNgBxaDihaxWGohGAItYCqbquhZxfk_cE7L-1k-s64FHDUc7AThp32aPW_O85u9NrfaUahyqdkwdujIPgfi4lJTzZ2ZhzRGb9ELWvZ1JI3kMk3_5Fbv-Q_Gf9AinKp9rrLA9QFH2Mww_1VKOh9qnqfqj6lmitePXzBPf83xgy8PgL7ypNOZkTLRtFMvDwQ25iTPRmEzK9klP0Gpam0vA</recordid><startdate>20110524</startdate><enddate>20110524</enddate><creator>Li, Da-Qiang</creator><creator>Pakala, Suresh B.</creator><creator>Reddy, Sirigiri Divijendra Natha</creator><creator>Ohshiro, Kazufumi</creator><creator>Zhang, Jun-Xiang</creator><creator>Wang, Lei</creator><creator>Zhang, Yanping</creator><creator>de Alborán, Ignacio Moreno</creator><creator>Pillai, M. Radhakrishna</creator><creator>Eswaran, Jeyanthy</creator><creator>Kumar, Rakesh</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110524</creationdate><title>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</title><author>Li, Da-Qiang ; Pakala, Suresh B. ; Reddy, Sirigiri Divijendra Natha ; Ohshiro, Kazufumi ; Zhang, Jun-Xiang ; Wang, Lei ; Zhang, Yanping ; de Alborán, Ignacio Moreno ; Pillai, M. Radhakrishna ; Eswaran, Jeyanthy ; Kumar, Rakesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>DNA</topic><topic>Down regulation</topic><topic>Epithelial cells</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Humans</topic><topic>Metastasis</topic><topic>Neoplasms - etiology</topic><topic>Promoter regions</topic><topic>Proteins</topic><topic>Reading Frames</topic><topic>Repressor Proteins - antagonists & inhibitors</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Trans-Activators</topic><topic>Transcription factors</topic><topic>Transcriptional Activation</topic><topic>Tumor Suppressor Protein p53</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Da-Qiang</creatorcontrib><creatorcontrib>Pakala, Suresh B.</creatorcontrib><creatorcontrib>Reddy, Sirigiri Divijendra Natha</creatorcontrib><creatorcontrib>Ohshiro, Kazufumi</creatorcontrib><creatorcontrib>Zhang, Jun-Xiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Yanping</creatorcontrib><creatorcontrib>de Alborán, Ignacio Moreno</creatorcontrib><creatorcontrib>Pillai, M. Radhakrishna</creatorcontrib><creatorcontrib>Eswaran, Jeyanthy</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Da-Qiang</au><au>Pakala, Suresh B.</au><au>Reddy, Sirigiri Divijendra Natha</au><au>Ohshiro, Kazufumi</au><au>Zhang, Jun-Xiang</au><au>Wang, Lei</au><au>Zhang, Yanping</au><au>de Alborán, Ignacio Moreno</au><au>Pillai, M. Radhakrishna</au><au>Eswaran, Jeyanthy</au><au>Kumar, Rakesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-24</date><risdate>2011</risdate><volume>108</volume><issue>21</issue><spage>8791</spage><epage>8796</epage><pages>8791-8796</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21555589</pmid><doi>10.1073/pnas.1018389108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (21), p.8791-8796 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_868768470 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Antibodies Biological Sciences Cancer Cell Line Cells Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism DNA Down regulation Epithelial cells Gene Expression Regulation Genes Histone Deacetylases - genetics Histone Deacetylases - metabolism Homeostasis Homeostasis - genetics Humans Metastasis Neoplasms - etiology Promoter regions Proteins Reading Frames Repressor Proteins - antagonists & inhibitors Repressor Proteins - genetics Repressor Proteins - metabolism Trans-Activators Transcription factors Transcriptional Activation Tumor Suppressor Protein p53 Tumors |
title | Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20autoregulatory%20mechanism%20of%20metastasis-associated%20protein%201-alternative%20reading%20frame%20pathway%20in%20oncogenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Da-Qiang&rft.date=2011-05-24&rft.volume=108&rft.issue=21&rft.spage=8791&rft.epage=8796&rft.pages=8791-8796&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1018389108&rft_dat=%3Cjstor_proqu%3E25831031%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868914895&rft_id=info:pmid/21555589&rft_jstor_id=25831031&rfr_iscdi=true |