Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis

Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (21), p.8791-8796
Hauptverfasser: Li, Da-Qiang, Pakala, Suresh B., Reddy, Sirigiri Divijendra Natha, Ohshiro, Kazufumi, Zhang, Jun-Xiang, Wang, Lei, Zhang, Yanping, de Alborán, Ignacio Moreno, Pillai, M. Radhakrishna, Eswaran, Jeyanthy, Kumar, Rakesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8796
container_issue 21
container_start_page 8791
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Li, Da-Qiang
Pakala, Suresh B.
Reddy, Sirigiri Divijendra Natha
Ohshiro, Kazufumi
Zhang, Jun-Xiang
Wang, Lei
Zhang, Yanping
de Alborán, Ignacio Moreno
Pillai, M. Radhakrishna
Eswaran, Jeyanthy
Kumar, Rakesh
description Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.
doi_str_mv 10.1073/pnas.1018389108
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_868768470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25831031</jstor_id><sourcerecordid>25831031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</originalsourceid><addsrcrecordid>eNpdkc2P1CAYh4lx446rZ09q48VT3ZcCLVxMdKPuJpt40TN529IZJi1UoGvGv17GGXdWCQkQnvfh40fICwrvKDTscnYY84xKJhUF-YisKCha1lzBY7ICqJpS8oqfk6cxbgFACQlPyHlFRW5Srcivj7a3wXTJeodjgUvywayXEfO4KybTbdDZOBV-yIuEMXcbS4zRdxaT6Ys5-GSsK2iJYzLBYbJ3pggGe-vWxRBwMsWMafMTd0XGvOv82jiTLc_I2YBjNM-P4wX5_vnTt6vr8vbrl5urD7dlx2uRStVjXSvBQAJva9EOUnGJcmBctB2vJGMNgBxaDihaxWGohGAItYCqbquhZxfk_cE7L-1k-s64FHDUc7AThp32aPW_O85u9NrfaUahyqdkwdujIPgfi4lJTzZ2ZhzRGb9ELWvZ1JI3kMk3_5Fbv-Q_Gf9AinKp9rrLA9QFH2Mww_1VKOh9qnqfqj6lmitePXzBPf83xgy8PgL7ypNOZkTLRtFMvDwQ25iTPRmEzK9klP0Gpam0vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868914895</pqid></control><display><type>article</type><title>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Da-Qiang ; Pakala, Suresh B. ; Reddy, Sirigiri Divijendra Natha ; Ohshiro, Kazufumi ; Zhang, Jun-Xiang ; Wang, Lei ; Zhang, Yanping ; de Alborán, Ignacio Moreno ; Pillai, M. Radhakrishna ; Eswaran, Jeyanthy ; Kumar, Rakesh</creator><creatorcontrib>Li, Da-Qiang ; Pakala, Suresh B. ; Reddy, Sirigiri Divijendra Natha ; Ohshiro, Kazufumi ; Zhang, Jun-Xiang ; Wang, Lei ; Zhang, Yanping ; de Alborán, Ignacio Moreno ; Pillai, M. Radhakrishna ; Eswaran, Jeyanthy ; Kumar, Rakesh</creatorcontrib><description>Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1018389108</identifier><identifier>PMID: 21555589</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antibodies ; Biological Sciences ; Cancer ; Cell Line ; Cells ; Cyclin-Dependent Kinase Inhibitor p16 - antagonists &amp; inhibitors ; Cyclin-Dependent Kinase Inhibitor p16 - genetics ; Cyclin-Dependent Kinase Inhibitor p16 - metabolism ; DNA ; Down regulation ; Epithelial cells ; Gene Expression Regulation ; Genes ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Homeostasis ; Homeostasis - genetics ; Humans ; Metastasis ; Neoplasms - etiology ; Promoter regions ; Proteins ; Reading Frames ; Repressor Proteins - antagonists &amp; inhibitors ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Trans-Activators ; Transcription factors ; Transcriptional Activation ; Tumor Suppressor Protein p53 ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (21), p.8791-8796</ispartof><rights>Copyright National Academy of Sciences May 24, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</citedby><cites>FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25831031$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25831031$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21555589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Da-Qiang</creatorcontrib><creatorcontrib>Pakala, Suresh B.</creatorcontrib><creatorcontrib>Reddy, Sirigiri Divijendra Natha</creatorcontrib><creatorcontrib>Ohshiro, Kazufumi</creatorcontrib><creatorcontrib>Zhang, Jun-Xiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Yanping</creatorcontrib><creatorcontrib>de Alborán, Ignacio Moreno</creatorcontrib><creatorcontrib>Pillai, M. Radhakrishna</creatorcontrib><creatorcontrib>Eswaran, Jeyanthy</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><title>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.</description><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - antagonists &amp; inhibitors</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</subject><subject>DNA</subject><subject>Down regulation</subject><subject>Epithelial cells</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Humans</subject><subject>Metastasis</subject><subject>Neoplasms - etiology</subject><subject>Promoter regions</subject><subject>Proteins</subject><subject>Reading Frames</subject><subject>Repressor Proteins - antagonists &amp; inhibitors</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Trans-Activators</subject><subject>Transcription factors</subject><subject>Transcriptional Activation</subject><subject>Tumor Suppressor Protein p53</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc2P1CAYh4lx446rZ09q48VT3ZcCLVxMdKPuJpt40TN529IZJi1UoGvGv17GGXdWCQkQnvfh40fICwrvKDTscnYY84xKJhUF-YisKCha1lzBY7ICqJpS8oqfk6cxbgFACQlPyHlFRW5Srcivj7a3wXTJeodjgUvywayXEfO4KybTbdDZOBV-yIuEMXcbS4zRdxaT6Ys5-GSsK2iJYzLBYbJ3pggGe-vWxRBwMsWMafMTd0XGvOv82jiTLc_I2YBjNM-P4wX5_vnTt6vr8vbrl5urD7dlx2uRStVjXSvBQAJva9EOUnGJcmBctB2vJGMNgBxaDihaxWGohGAItYCqbquhZxfk_cE7L-1k-s64FHDUc7AThp32aPW_O85u9NrfaUahyqdkwdujIPgfi4lJTzZ2ZhzRGb9ELWvZ1JI3kMk3_5Fbv-Q_Gf9AinKp9rrLA9QFH2Mww_1VKOh9qnqfqj6lmitePXzBPf83xgy8PgL7ypNOZkTLRtFMvDwQ25iTPRmEzK9klP0Gpam0vA</recordid><startdate>20110524</startdate><enddate>20110524</enddate><creator>Li, Da-Qiang</creator><creator>Pakala, Suresh B.</creator><creator>Reddy, Sirigiri Divijendra Natha</creator><creator>Ohshiro, Kazufumi</creator><creator>Zhang, Jun-Xiang</creator><creator>Wang, Lei</creator><creator>Zhang, Yanping</creator><creator>de Alborán, Ignacio Moreno</creator><creator>Pillai, M. Radhakrishna</creator><creator>Eswaran, Jeyanthy</creator><creator>Kumar, Rakesh</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110524</creationdate><title>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</title><author>Li, Da-Qiang ; Pakala, Suresh B. ; Reddy, Sirigiri Divijendra Natha ; Ohshiro, Kazufumi ; Zhang, Jun-Xiang ; Wang, Lei ; Zhang, Yanping ; de Alborán, Ignacio Moreno ; Pillai, M. Radhakrishna ; Eswaran, Jeyanthy ; Kumar, Rakesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-9da669530804b65bf8948a8f345bc428337008fb40a5b940f2553a065026b2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - antagonists &amp; inhibitors</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p16 - metabolism</topic><topic>DNA</topic><topic>Down regulation</topic><topic>Epithelial cells</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Humans</topic><topic>Metastasis</topic><topic>Neoplasms - etiology</topic><topic>Promoter regions</topic><topic>Proteins</topic><topic>Reading Frames</topic><topic>Repressor Proteins - antagonists &amp; inhibitors</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Trans-Activators</topic><topic>Transcription factors</topic><topic>Transcriptional Activation</topic><topic>Tumor Suppressor Protein p53</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Da-Qiang</creatorcontrib><creatorcontrib>Pakala, Suresh B.</creatorcontrib><creatorcontrib>Reddy, Sirigiri Divijendra Natha</creatorcontrib><creatorcontrib>Ohshiro, Kazufumi</creatorcontrib><creatorcontrib>Zhang, Jun-Xiang</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Yanping</creatorcontrib><creatorcontrib>de Alborán, Ignacio Moreno</creatorcontrib><creatorcontrib>Pillai, M. Radhakrishna</creatorcontrib><creatorcontrib>Eswaran, Jeyanthy</creatorcontrib><creatorcontrib>Kumar, Rakesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Da-Qiang</au><au>Pakala, Suresh B.</au><au>Reddy, Sirigiri Divijendra Natha</au><au>Ohshiro, Kazufumi</au><au>Zhang, Jun-Xiang</au><au>Wang, Lei</au><au>Zhang, Yanping</au><au>de Alborán, Ignacio Moreno</au><au>Pillai, M. Radhakrishna</au><au>Eswaran, Jeyanthy</au><au>Kumar, Rakesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-24</date><risdate>2011</risdate><volume>108</volume><issue>21</issue><spage>8791</spage><epage>8796</epage><pages>8791-8796</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and histone deacetylation complex, is widely up-regulated in human cancers and correlates with tumor metastasis, its regulatory mechanism and related signaling pathways remain unknown. Here, we report a previously unrecognized bidirectional autoregulatory loop between MTA1 and tumor suppressor alternative reading frame (ARF). MTA1 transactivates ARF transcription by recruiting the transcription factor c-Jun onto the ARF promoter in a p53-independent manner. ARF, in turn, negatively regulates MTA1 expression independently of p53 and c-Myc. In this context, ARF interacts with transcription factor specificity protein 1 (SP1) and promotes its proteasomal degradation by enhancing its interaction with proteasome subunit regulatory particle ATPase 6, thereby abrogating the ability of SP1 to stimulate MTA1 transcription. ARF also physically associates with MTA1 and affects its protein stability. Thus, MTA1-mediated activation of ARF and ARF-mediated functional inhibition of MTA1 represent a p53-independent bidirectional autoregulatory mechanism in which these two opposites act in concert to regulate cell homeostasis and oncogenesis, depending on the cellular context and the environment.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21555589</pmid><doi>10.1073/pnas.1018389108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (21), p.8791-8796
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_868768470
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antibodies
Biological Sciences
Cancer
Cell Line
Cells
Cyclin-Dependent Kinase Inhibitor p16 - antagonists & inhibitors
Cyclin-Dependent Kinase Inhibitor p16 - genetics
Cyclin-Dependent Kinase Inhibitor p16 - metabolism
DNA
Down regulation
Epithelial cells
Gene Expression Regulation
Genes
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Homeostasis
Homeostasis - genetics
Humans
Metastasis
Neoplasms - etiology
Promoter regions
Proteins
Reading Frames
Repressor Proteins - antagonists & inhibitors
Repressor Proteins - genetics
Repressor Proteins - metabolism
Trans-Activators
Transcription factors
Transcriptional Activation
Tumor Suppressor Protein p53
Tumors
title Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20autoregulatory%20mechanism%20of%20metastasis-associated%20protein%201-alternative%20reading%20frame%20pathway%20in%20oncogenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Da-Qiang&rft.date=2011-05-24&rft.volume=108&rft.issue=21&rft.spage=8791&rft.epage=8796&rft.pages=8791-8796&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1018389108&rft_dat=%3Cjstor_proqu%3E25831031%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868914895&rft_id=info:pmid/21555589&rft_jstor_id=25831031&rfr_iscdi=true