Generalized functional responses for species distributions

Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2011-03, Vol.92 (3), p.583-589
Hauptverfasser: Matthiopoulos, Jason, Hebblewhite, Mark, Aarts, Geert, Fieberg, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue 3
container_start_page 583
container_title Ecology (Durham)
container_volume 92
creator Matthiopoulos, Jason
Hebblewhite, Mark
Aarts, Geert
Fieberg, John
description Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches.
doi_str_mv 10.1890/10-0751.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_868766778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41151176</jstor_id><sourcerecordid>41151176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5743-3a4e44d87eb42a96a2e25e82aacd97a2f824b106e7e206f9869dbe574d8d66a93</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhi0EokvhwA8AViCEOKTYjuOP3tCqFKRKHKAHTtYkmVReZe1gJyrLr8chywpVqg8eS_O889ozJuQ5o2dMG_qB0YKqip2xB2TFTGkKwxR9SFaUMl4YWekT8iSlLc2LCf2YnHAmqRZSrcj5JXqM0Lvf2K67yTejCx76dcQ0BJ8wrbsQ12nAxuVz69IYXT3NUHpKHnXQJ3x2iKfk-tPF983n4urr5ZfNx6sCKiXKogSBQrRaYS04GAkceYWaAzStUcA7zUXNqESFnMrOaGnaGrO01a2UYMpTcr7UvYUb9M7nzXqIjUs2gLO9qyPEvb2dovX9HIapTlbQKhfO4neLeIjh54RptDuXGux78BimZLXUSkqldCZf3yG3YYq5F38hqkqhZ-j9AjUxpBSxs0N0u9meUTvPYo7zLCzL7MtDwaneYXsk_zU_A28PAKQG-i6Cnx915AQTvJI8c-LQANfj_n5He7H5wSljhpeVLrPsxSLbpjHEo0wwVjGmZM6_WvIdBAs3MVtff8t6mX-JUcrMF3yzEDDu82-wmOA_t6Ht7PhrvI-6040_yQDJug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868073488</pqid></control><display><type>article</type><title>Generalized functional responses for species distributions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Matthiopoulos, Jason ; Hebblewhite, Mark ; Aarts, Geert ; Fieberg, John</creator><creatorcontrib>Matthiopoulos, Jason ; Hebblewhite, Mark ; Aarts, Geert ; Fieberg, John</creatorcontrib><description>Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/10-0751.1</identifier><identifier>PMID: 21608467</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; availability ; Biological and medical sciences ; Biotelemetry ; Canis lupis ; climate change ; Climatology. Bioclimatology. Climate change ; computer software ; Conservation of Natural Resources ; Correlation analysis ; Demography ; distribution models ; Earth, ocean, space ; Ecological modeling ; Ecology ; Ecosystem ; Environmental space ; Exact sciences and technology ; External geophysics ; Functional responses ; Fundamental and applied biological sciences. Psychology ; General aspects ; generalized linear mixed model ; habitat preference ; Habitat preferences ; habitat selection ; Habitats ; home range ; logistic-regression ; Meteorology ; Modeling ; Models, Biological ; Natural resources ; Nonnative species ; predictive models ; preference ; relating populations ; resource selection functions ; Simulation ; simulation study ; space ; space-use ; spatial data ; spatial ecology ; species distributions ; Telemetry ; utilization distribution ; Wildlife ecology ; wolf ; Wolves ; Wolves - physiology</subject><ispartof>Ecology (Durham), 2011-03, Vol.92 (3), p.583-589</ispartof><rights>Copyright © 2011 Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Mar 2011</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5743-3a4e44d87eb42a96a2e25e82aacd97a2f824b106e7e206f9869dbe574d8d66a93</citedby><cites>FETCH-LOGICAL-a5743-3a4e44d87eb42a96a2e25e82aacd97a2f824b106e7e206f9869dbe574d8d66a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41151176$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41151176$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24142562$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21608467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthiopoulos, Jason</creatorcontrib><creatorcontrib>Hebblewhite, Mark</creatorcontrib><creatorcontrib>Aarts, Geert</creatorcontrib><creatorcontrib>Fieberg, John</creatorcontrib><title>Generalized functional responses for species distributions</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>availability</subject><subject>Biological and medical sciences</subject><subject>Biotelemetry</subject><subject>Canis lupis</subject><subject>climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>computer software</subject><subject>Conservation of Natural Resources</subject><subject>Correlation analysis</subject><subject>Demography</subject><subject>distribution models</subject><subject>Earth, ocean, space</subject><subject>Ecological modeling</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Environmental space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Functional responses</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>generalized linear mixed model</subject><subject>habitat preference</subject><subject>Habitat preferences</subject><subject>habitat selection</subject><subject>Habitats</subject><subject>home range</subject><subject>logistic-regression</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Natural resources</subject><subject>Nonnative species</subject><subject>predictive models</subject><subject>preference</subject><subject>relating populations</subject><subject>resource selection functions</subject><subject>Simulation</subject><subject>simulation study</subject><subject>space</subject><subject>space-use</subject><subject>spatial data</subject><subject>spatial ecology</subject><subject>species distributions</subject><subject>Telemetry</subject><subject>utilization distribution</subject><subject>Wildlife ecology</subject><subject>wolf</subject><subject>Wolves</subject><subject>Wolves - physiology</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kk1v1DAQhi0EokvhwA8AViCEOKTYjuOP3tCqFKRKHKAHTtYkmVReZe1gJyrLr8chywpVqg8eS_O889ozJuQ5o2dMG_qB0YKqip2xB2TFTGkKwxR9SFaUMl4YWekT8iSlLc2LCf2YnHAmqRZSrcj5JXqM0Lvf2K67yTejCx76dcQ0BJ8wrbsQ12nAxuVz69IYXT3NUHpKHnXQJ3x2iKfk-tPF983n4urr5ZfNx6sCKiXKogSBQrRaYS04GAkceYWaAzStUcA7zUXNqESFnMrOaGnaGrO01a2UYMpTcr7UvYUb9M7nzXqIjUs2gLO9qyPEvb2dovX9HIapTlbQKhfO4neLeIjh54RptDuXGux78BimZLXUSkqldCZf3yG3YYq5F38hqkqhZ-j9AjUxpBSxs0N0u9meUTvPYo7zLCzL7MtDwaneYXsk_zU_A28PAKQG-i6Cnx915AQTvJI8c-LQANfj_n5He7H5wSljhpeVLrPsxSLbpjHEo0wwVjGmZM6_WvIdBAs3MVtff8t6mX-JUcrMF3yzEDDu82-wmOA_t6Ht7PhrvI-6040_yQDJug</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Matthiopoulos, Jason</creator><creator>Hebblewhite, Mark</creator><creator>Aarts, Geert</creator><creator>Fieberg, John</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>201103</creationdate><title>Generalized functional responses for species distributions</title><author>Matthiopoulos, Jason ; Hebblewhite, Mark ; Aarts, Geert ; Fieberg, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5743-3a4e44d87eb42a96a2e25e82aacd97a2f824b106e7e206f9869dbe574d8d66a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>availability</topic><topic>Biological and medical sciences</topic><topic>Biotelemetry</topic><topic>Canis lupis</topic><topic>climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>computer software</topic><topic>Conservation of Natural Resources</topic><topic>Correlation analysis</topic><topic>Demography</topic><topic>distribution models</topic><topic>Earth, ocean, space</topic><topic>Ecological modeling</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Environmental space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Functional responses</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>generalized linear mixed model</topic><topic>habitat preference</topic><topic>Habitat preferences</topic><topic>habitat selection</topic><topic>Habitats</topic><topic>home range</topic><topic>logistic-regression</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Natural resources</topic><topic>Nonnative species</topic><topic>predictive models</topic><topic>preference</topic><topic>relating populations</topic><topic>resource selection functions</topic><topic>Simulation</topic><topic>simulation study</topic><topic>space</topic><topic>space-use</topic><topic>spatial data</topic><topic>spatial ecology</topic><topic>species distributions</topic><topic>Telemetry</topic><topic>utilization distribution</topic><topic>Wildlife ecology</topic><topic>wolf</topic><topic>Wolves</topic><topic>Wolves - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthiopoulos, Jason</creatorcontrib><creatorcontrib>Hebblewhite, Mark</creatorcontrib><creatorcontrib>Aarts, Geert</creatorcontrib><creatorcontrib>Fieberg, John</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthiopoulos, Jason</au><au>Hebblewhite, Mark</au><au>Aarts, Geert</au><au>Fieberg, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized functional responses for species distributions</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-03</date><risdate>2011</risdate><volume>92</volume><issue>3</issue><spage>583</spage><epage>589</epage><pages>583-589</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>21608467</pmid><doi>10.1890/10-0751.1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2011-03, Vol.92 (3), p.583-589
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_868766778
source MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Animal and plant ecology
Animal, plant and microbial ecology
Animals
Applied ecology
availability
Biological and medical sciences
Biotelemetry
Canis lupis
climate change
Climatology. Bioclimatology. Climate change
computer software
Conservation of Natural Resources
Correlation analysis
Demography
distribution models
Earth, ocean, space
Ecological modeling
Ecology
Ecosystem
Environmental space
Exact sciences and technology
External geophysics
Functional responses
Fundamental and applied biological sciences. Psychology
General aspects
generalized linear mixed model
habitat preference
Habitat preferences
habitat selection
Habitats
home range
logistic-regression
Meteorology
Modeling
Models, Biological
Natural resources
Nonnative species
predictive models
preference
relating populations
resource selection functions
Simulation
simulation study
space
space-use
spatial data
spatial ecology
species distributions
Telemetry
utilization distribution
Wildlife ecology
wolf
Wolves
Wolves - physiology
title Generalized functional responses for species distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20functional%20responses%20for%20species%20distributions&rft.jtitle=Ecology%20(Durham)&rft.au=Matthiopoulos,%20Jason&rft.date=2011-03&rft.volume=92&rft.issue=3&rft.spage=583&rft.epage=589&rft.pages=583-589&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/10-0751.1&rft_dat=%3Cjstor_proqu%3E41151176%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868073488&rft_id=info:pmid/21608467&rft_jstor_id=41151176&rfr_iscdi=true