Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol

Summary Arabidopsis peroxisomes contain an incomplete oxidative pentose‐phosphate pathway (OPPP), consisting of 6‐phosphogluconolactonase and 6‐phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose‐6‐phosphate dehydrogenase (G6PD) is required...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2011-06, Vol.66 (5), p.745-758
Hauptverfasser: Meyer, Tanja, Hölscher, Christian, Schwöppe, Christian, von Schaewen, Antje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 5
container_start_page 745
container_title The Plant journal : for cell and molecular biology
container_volume 66
creator Meyer, Tanja
Hölscher, Christian
Schwöppe, Christian
von Schaewen, Antje
description Summary Arabidopsis peroxisomes contain an incomplete oxidative pentose‐phosphate pathway (OPPP), consisting of 6‐phosphogluconolactonase and 6‐phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose‐6‐phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C‐terminal PTS1 or N‐terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid‐predicted G6PD1 with free C‐terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1‐like signal; however, in a medial G6PD1 reporter fusion with free N‐ and C‐terminal ends this cryptic information was overruled by the transit peptide. Yeast two‐hybrid analyses revealed selective protein–protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid‐destined thioredoxin m2 (Trxm2). Serine replacement of redox‐sensitive cysteines conserved in G6PD4 abolished the G6PD4–G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4–G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trxm2 with G6PD4 (or G6PD1) in plastids, but co‐expression analyses revealed Trxm2‐mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC113S exchange in Trxm2. Based on preliminary findings with plastid‐predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non‐functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin‐relayed alternative targeting to peroxisomes.
doi_str_mv 10.1111/j.1365-313X.2011.04535.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_868624686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356122401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4755-98b13b709160b6de20f2c4d56cea7ea365c63c188473df77ca621a60210cf91d3</originalsourceid><addsrcrecordid>eNqNkcGO0zAQhiMEYsvCKyALCXFKsePESQ4cqgUW0ErsYZG4WY49aVy5drCd7vbGI_AEPBxPgtOWReKEpbFHnu8fW_NnGSJ4SdJ6vVkSyqqcEvp1WWBClrisaLW8e5At7gsPswVuGc7rkhRn2ZMQNhiTmrLycXZWEIrbpsaL7OfKRPBWRL0DFIVfQ9R2jVyPVl50Wrkx6IBGI0LUSku0NpN0AX59_8FSjIML4yAiIAXDXnm3BisCoEt2_ZYgbXfO7CAguQ8RtJ1VCkawCmxM1fSwkFE7i251HA6iMl2jOECSRBeceZo96oUJ8Ox0nmdf3r-7ufiQX32-_HixusplWVdV3jYdoV2NW8JwxxQUuC9kqSomQdQg0kgko5I0TVlT1de1FKwgguGCYNm3RNHz7NWx7-jdtwlC5FsdJBgjLLgp8IY1rCjTlsgX_5AbN6UBmgNUVFXD2gQ1R0h6F4KHno9eb4Xfc4L57CDf8NkoPhvFZwf5wUF-l6TPT_2nbgvqXvjHsgS8PAEiSGF6L6zU4S9XkraipEncmyN3qw3s__sD_Ob605zR36cTvD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>868255869</pqid></control><display><type>article</type><title>Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meyer, Tanja ; Hölscher, Christian ; Schwöppe, Christian ; von Schaewen, Antje</creator><creatorcontrib>Meyer, Tanja ; Hölscher, Christian ; Schwöppe, Christian ; von Schaewen, Antje</creatorcontrib><description>Summary Arabidopsis peroxisomes contain an incomplete oxidative pentose‐phosphate pathway (OPPP), consisting of 6‐phosphogluconolactonase and 6‐phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose‐6‐phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C‐terminal PTS1 or N‐terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid‐predicted G6PD1 with free C‐terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1‐like signal; however, in a medial G6PD1 reporter fusion with free N‐ and C‐terminal ends this cryptic information was overruled by the transit peptide. Yeast two‐hybrid analyses revealed selective protein–protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid‐destined thioredoxin m2 (Trxm2). Serine replacement of redox‐sensitive cysteines conserved in G6PD4 abolished the G6PD4–G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4–G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trxm2 with G6PD4 (or G6PD1) in plastids, but co‐expression analyses revealed Trxm2‐mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC113S exchange in Trxm2. Based on preliminary findings with plastid‐predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non‐functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin‐relayed alternative targeting to peroxisomes.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2011.04535.x</identifier><identifier>PMID: 21309870</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cellular biology ; chloroplast/peroxisome dual‐targeting ; Cloning, Molecular ; Cysteine - metabolism ; Cytosol - metabolism ; cytosolic sensor ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; Genes, Reporter ; Genetic Complementation Test ; Glucosephosphate Dehydrogenase - genetics ; Glucosephosphate Dehydrogenase - metabolism ; glucose‐6‐phosphate dehydrogenase ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Mutation ; Nicotiana - genetics ; Nicotiana - metabolism ; Onions - genetics ; Onions - metabolism ; oxidative pentose phosphate pathway ; Peroxisomes - metabolism ; Phylogeny ; Plant physiology and development ; Plastids - genetics ; Plastids - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; redox‐modulated cysteines ; Thioredoxins - genetics ; Thioredoxins - metabolism ; Two-Hybrid System Techniques</subject><ispartof>The Plant journal : for cell and molecular biology, 2011-06, Vol.66 (5), p.745-758</ispartof><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4755-98b13b709160b6de20f2c4d56cea7ea365c63c188473df77ca621a60210cf91d3</citedby><cites>FETCH-LOGICAL-c4755-98b13b709160b6de20f2c4d56cea7ea365c63c188473df77ca621a60210cf91d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2011.04535.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2011.04535.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24195318$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21309870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Tanja</creatorcontrib><creatorcontrib>Hölscher, Christian</creatorcontrib><creatorcontrib>Schwöppe, Christian</creatorcontrib><creatorcontrib>von Schaewen, Antje</creatorcontrib><title>Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Arabidopsis peroxisomes contain an incomplete oxidative pentose‐phosphate pathway (OPPP), consisting of 6‐phosphogluconolactonase and 6‐phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose‐6‐phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C‐terminal PTS1 or N‐terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid‐predicted G6PD1 with free C‐terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1‐like signal; however, in a medial G6PD1 reporter fusion with free N‐ and C‐terminal ends this cryptic information was overruled by the transit peptide. Yeast two‐hybrid analyses revealed selective protein–protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid‐destined thioredoxin m2 (Trxm2). Serine replacement of redox‐sensitive cysteines conserved in G6PD4 abolished the G6PD4–G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4–G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trxm2 with G6PD4 (or G6PD1) in plastids, but co‐expression analyses revealed Trxm2‐mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC113S exchange in Trxm2. Based on preliminary findings with plastid‐predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non‐functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin‐relayed alternative targeting to peroxisomes.</description><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>chloroplast/peroxisome dual‐targeting</subject><subject>Cloning, Molecular</subject><subject>Cysteine - metabolism</subject><subject>Cytosol - metabolism</subject><subject>cytosolic sensor</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Reporter</subject><subject>Genetic Complementation Test</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>glucose‐6‐phosphate dehydrogenase</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Mutation</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Onions - genetics</subject><subject>Onions - metabolism</subject><subject>oxidative pentose phosphate pathway</subject><subject>Peroxisomes - metabolism</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plastids - genetics</subject><subject>Plastids - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>redox‐modulated cysteines</subject><subject>Thioredoxins - genetics</subject><subject>Thioredoxins - metabolism</subject><subject>Two-Hybrid System Techniques</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcGO0zAQhiMEYsvCKyALCXFKsePESQ4cqgUW0ErsYZG4WY49aVy5drCd7vbGI_AEPBxPgtOWReKEpbFHnu8fW_NnGSJ4SdJ6vVkSyqqcEvp1WWBClrisaLW8e5At7gsPswVuGc7rkhRn2ZMQNhiTmrLycXZWEIrbpsaL7OfKRPBWRL0DFIVfQ9R2jVyPVl50Wrkx6IBGI0LUSku0NpN0AX59_8FSjIML4yAiIAXDXnm3BisCoEt2_ZYgbXfO7CAguQ8RtJ1VCkawCmxM1fSwkFE7i251HA6iMl2jOECSRBeceZo96oUJ8Ox0nmdf3r-7ufiQX32-_HixusplWVdV3jYdoV2NW8JwxxQUuC9kqSomQdQg0kgko5I0TVlT1de1FKwgguGCYNm3RNHz7NWx7-jdtwlC5FsdJBgjLLgp8IY1rCjTlsgX_5AbN6UBmgNUVFXD2gQ1R0h6F4KHno9eb4Xfc4L57CDf8NkoPhvFZwf5wUF-l6TPT_2nbgvqXvjHsgS8PAEiSGF6L6zU4S9XkraipEncmyN3qw3s__sD_Ob605zR36cTvD8</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Meyer, Tanja</creator><creator>Hölscher, Christian</creator><creator>Schwöppe, Christian</creator><creator>von Schaewen, Antje</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol</title><author>Meyer, Tanja ; Hölscher, Christian ; Schwöppe, Christian ; von Schaewen, Antje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4755-98b13b709160b6de20f2c4d56cea7ea365c63c188473df77ca621a60210cf91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>chloroplast/peroxisome dual‐targeting</topic><topic>Cloning, Molecular</topic><topic>Cysteine - metabolism</topic><topic>Cytosol - metabolism</topic><topic>cytosolic sensor</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Reporter</topic><topic>Genetic Complementation Test</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>glucose‐6‐phosphate dehydrogenase</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Mutation</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Onions - genetics</topic><topic>Onions - metabolism</topic><topic>oxidative pentose phosphate pathway</topic><topic>Peroxisomes - metabolism</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plastids - genetics</topic><topic>Plastids - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>redox‐modulated cysteines</topic><topic>Thioredoxins - genetics</topic><topic>Thioredoxins - metabolism</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Tanja</creatorcontrib><creatorcontrib>Hölscher, Christian</creatorcontrib><creatorcontrib>Schwöppe, Christian</creatorcontrib><creatorcontrib>von Schaewen, Antje</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Tanja</au><au>Hölscher, Christian</au><au>Schwöppe, Christian</au><au>von Schaewen, Antje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2011-06</date><risdate>2011</risdate><volume>66</volume><issue>5</issue><spage>745</spage><epage>758</epage><pages>745-758</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Arabidopsis peroxisomes contain an incomplete oxidative pentose‐phosphate pathway (OPPP), consisting of 6‐phosphogluconolactonase and 6‐phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose‐6‐phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C‐terminal PTS1 or N‐terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid‐predicted G6PD1 with free C‐terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1‐like signal; however, in a medial G6PD1 reporter fusion with free N‐ and C‐terminal ends this cryptic information was overruled by the transit peptide. Yeast two‐hybrid analyses revealed selective protein–protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid‐destined thioredoxin m2 (Trxm2). Serine replacement of redox‐sensitive cysteines conserved in G6PD4 abolished the G6PD4–G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4–G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trxm2 with G6PD4 (or G6PD1) in plastids, but co‐expression analyses revealed Trxm2‐mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC113S exchange in Trxm2. Based on preliminary findings with plastid‐predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non‐functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin‐relayed alternative targeting to peroxisomes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21309870</pmid><doi>10.1111/j.1365-313X.2011.04535.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2011-06, Vol.66 (5), p.745-758
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_868624686
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological and medical sciences
Cellular biology
chloroplast/peroxisome dual‐targeting
Cloning, Molecular
Cysteine - metabolism
Cytosol - metabolism
cytosolic sensor
Flowers & plants
Fundamental and applied biological sciences. Psychology
Genes, Reporter
Genetic Complementation Test
Glucosephosphate Dehydrogenase - genetics
Glucosephosphate Dehydrogenase - metabolism
glucose‐6‐phosphate dehydrogenase
Isoenzymes - genetics
Isoenzymes - metabolism
Mutation
Nicotiana - genetics
Nicotiana - metabolism
Onions - genetics
Onions - metabolism
oxidative pentose phosphate pathway
Peroxisomes - metabolism
Phylogeny
Plant physiology and development
Plastids - genetics
Plastids - metabolism
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
redox‐modulated cysteines
Thioredoxins - genetics
Thioredoxins - metabolism
Two-Hybrid System Techniques
title Alternative targeting of Arabidopsis plastidic glucose‐6‐phosphate dehydrogenase G6PD1 involves cysteine‐dependent interaction with G6PD4 in the cytosol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20targeting%20of%20Arabidopsis%20plastidic%20glucose%E2%80%906%E2%80%90phosphate%20dehydrogenase%20G6PD1%20involves%20cysteine%E2%80%90dependent%20interaction%20with%20G6PD4%20in%20the%20cytosol&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Meyer,%20Tanja&rft.date=2011-06&rft.volume=66&rft.issue=5&rft.spage=745&rft.epage=758&rft.pages=745-758&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2011.04535.x&rft_dat=%3Cproquest_cross%3E2356122401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=868255869&rft_id=info:pmid/21309870&rfr_iscdi=true