Contextual Kernel and Spectral Methods for Learning the Semantics of Images

This paper presents contextual kernel and spectral methods for learning the semantics of images that allow us to automatically annotate an image with keywords. First, to exploit the context of visual words within images for automatic image annotation, we define a novel spatial string kernel to quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2011-06, Vol.20 (6), p.1739-1750
Hauptverfasser: Zhiwu Lu, Ip, H H S, Yuxin Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 6
container_start_page 1739
container_title IEEE transactions on image processing
container_volume 20
creator Zhiwu Lu
Ip, H H S
Yuxin Peng
description This paper presents contextual kernel and spectral methods for learning the semantics of images that allow us to automatically annotate an image with keywords. First, to exploit the context of visual words within images for automatic image annotation, we define a novel spatial string kernel to quantify the similarity between images. Specifically, we represent each image as a 2-D sequence of visual words and measure the similarity between two 2-D sequences using the shared occurrences of s -length 1-D subsequences by decomposing each 2-D sequence into two orthogonal 1-D sequences. Based on our proposed spatial string kernel, we further formulate automatic image annotation as a contextual keyword propagation problem, which can be solved very efficiently by linear programming. Unlike the traditional relevance models that treat each keyword independently, the proposed contextual kernel method for keyword propagation takes into account the semantic context of annotation keywords and propagates multiple keywords simultaneously. Significantly, this type of semantic context can also be incorporated into spectral embedding for refining the annotations of images predicted by keyword propagation. Experiments on three standard image datasets demonstrate that our contextual kernel and spectral methods can achieve significantly better results than the state of the art.
doi_str_mv 10.1109/TIP.2010.2103082
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_868030394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5678649</ieee_id><sourcerecordid>889443524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b3e2df3d5473253768ae9d4905424dfaed51c6bfb321a14fd1e5605fee229dad3</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmARUpqP9h4IBBEoPTnVSCPbOoYlTZdsaSHp2WitUeJgyxvJhvbfV8tuU-ilJ309M0h6GTsDcQUgzKeH5fcrKfJKglCilgfsGAxCIQTKwzwXuioqQHPETlJ6FgJQQ_mWHUkAo1RVHrO7xRgm-jnNtud3FAP13AbH7zfUTjHvfaXpaXSJ-zHyFdkYuvDIpyfi9zTYMHVt4qPny8E-UnrH3njbJ3q_H0_Zj883D4svxerb7XJxvSpaFNVUrBVJ55XTWCmp8y1qS8ahERolOm_JaWjLtV8rCRbQOyBdCu2JpDTOOnXKPu76buL4MlOamqFLLfW9DTTOqalrg6i0xP_Lss7_psxWXv4jn8c5hvyMjCosa2VERmKH2jimFMk3m9gNNv5qQDTbQJocSLMNpNkHkksu9n3n9UDuteBPAhl82AObWtv7aEPbpb8OoQasTHbnO9cR0euxLqu6RKN-A1rFmic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867468390</pqid></control><display><type>article</type><title>Contextual Kernel and Spectral Methods for Learning the Semantics of Images</title><source>IEEE Electronic Library (IEL)</source><creator>Zhiwu Lu ; Ip, H H S ; Yuxin Peng</creator><creatorcontrib>Zhiwu Lu ; Ip, H H S ; Yuxin Peng</creatorcontrib><description>This paper presents contextual kernel and spectral methods for learning the semantics of images that allow us to automatically annotate an image with keywords. First, to exploit the context of visual words within images for automatic image annotation, we define a novel spatial string kernel to quantify the similarity between images. Specifically, we represent each image as a 2-D sequence of visual words and measure the similarity between two 2-D sequences using the shared occurrences of s -length 1-D subsequences by decomposing each 2-D sequence into two orthogonal 1-D sequences. Based on our proposed spatial string kernel, we further formulate automatic image annotation as a contextual keyword propagation problem, which can be solved very efficiently by linear programming. Unlike the traditional relevance models that treat each keyword independently, the proposed contextual kernel method for keyword propagation takes into account the semantic context of annotation keywords and propagates multiple keywords simultaneously. Significantly, this type of semantic context can also be incorporated into spectral embedding for refining the annotations of images predicted by keyword propagation. Experiments on three standard image datasets demonstrate that our contextual kernel and spectral methods can achieve significantly better results than the state of the art.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2010.2103082</identifier><identifier>PMID: 21193376</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Annotation refinement ; Annotations ; Applied sciences ; Artificial Intelligence ; Context ; Correlation ; Documentation - methods ; Exact sciences and technology ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Kernel ; kernel methods ; Kernels ; keyword propagation ; Linear programming ; Manifolds ; Natural Language Processing ; Pattern Recognition, Automated - methods ; Propagation ; Reproducibility of Results ; Semantics ; Sensitivity and Specificity ; Signal processing ; Similarity ; spectral embedding ; Spectral methods ; string kernel ; Strings ; Studies ; Telecommunications and information theory ; Training ; Visual ; visual words ; Visualization</subject><ispartof>IEEE transactions on image processing, 2011-06, Vol.20 (6), p.1739-1750</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b3e2df3d5473253768ae9d4905424dfaed51c6bfb321a14fd1e5605fee229dad3</citedby><cites>FETCH-LOGICAL-c407t-b3e2df3d5473253768ae9d4905424dfaed51c6bfb321a14fd1e5605fee229dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5678649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5678649$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24181479$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21193376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhiwu Lu</creatorcontrib><creatorcontrib>Ip, H H S</creatorcontrib><creatorcontrib>Yuxin Peng</creatorcontrib><title>Contextual Kernel and Spectral Methods for Learning the Semantics of Images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents contextual kernel and spectral methods for learning the semantics of images that allow us to automatically annotate an image with keywords. First, to exploit the context of visual words within images for automatic image annotation, we define a novel spatial string kernel to quantify the similarity between images. Specifically, we represent each image as a 2-D sequence of visual words and measure the similarity between two 2-D sequences using the shared occurrences of s -length 1-D subsequences by decomposing each 2-D sequence into two orthogonal 1-D sequences. Based on our proposed spatial string kernel, we further formulate automatic image annotation as a contextual keyword propagation problem, which can be solved very efficiently by linear programming. Unlike the traditional relevance models that treat each keyword independently, the proposed contextual kernel method for keyword propagation takes into account the semantic context of annotation keywords and propagates multiple keywords simultaneously. Significantly, this type of semantic context can also be incorporated into spectral embedding for refining the annotations of images predicted by keyword propagation. Experiments on three standard image datasets demonstrate that our contextual kernel and spectral methods can achieve significantly better results than the state of the art.</description><subject>Algorithms</subject><subject>Annotation refinement</subject><subject>Annotations</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Context</subject><subject>Correlation</subject><subject>Documentation - methods</subject><subject>Exact sciences and technology</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>kernel methods</subject><subject>Kernels</subject><subject>keyword propagation</subject><subject>Linear programming</subject><subject>Manifolds</subject><subject>Natural Language Processing</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Propagation</subject><subject>Reproducibility of Results</subject><subject>Semantics</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Similarity</subject><subject>spectral embedding</subject><subject>Spectral methods</subject><subject>string kernel</subject><subject>Strings</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Visual</subject><subject>visual words</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1r3DAQBmARUpqP9h4IBBEoPTnVSCPbOoYlTZdsaSHp2WitUeJgyxvJhvbfV8tuU-ilJ309M0h6GTsDcQUgzKeH5fcrKfJKglCilgfsGAxCIQTKwzwXuioqQHPETlJ6FgJQQ_mWHUkAo1RVHrO7xRgm-jnNtud3FAP13AbH7zfUTjHvfaXpaXSJ-zHyFdkYuvDIpyfi9zTYMHVt4qPny8E-UnrH3njbJ3q_H0_Zj883D4svxerb7XJxvSpaFNVUrBVJ55XTWCmp8y1qS8ahERolOm_JaWjLtV8rCRbQOyBdCu2JpDTOOnXKPu76buL4MlOamqFLLfW9DTTOqalrg6i0xP_Lss7_psxWXv4jn8c5hvyMjCosa2VERmKH2jimFMk3m9gNNv5qQDTbQJocSLMNpNkHkksu9n3n9UDuteBPAhl82AObWtv7aEPbpb8OoQasTHbnO9cR0euxLqu6RKN-A1rFmic</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Zhiwu Lu</creator><creator>Ip, H H S</creator><creator>Yuxin Peng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110601</creationdate><title>Contextual Kernel and Spectral Methods for Learning the Semantics of Images</title><author>Zhiwu Lu ; Ip, H H S ; Yuxin Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b3e2df3d5473253768ae9d4905424dfaed51c6bfb321a14fd1e5605fee229dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Annotation refinement</topic><topic>Annotations</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Context</topic><topic>Correlation</topic><topic>Documentation - methods</topic><topic>Exact sciences and technology</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>kernel methods</topic><topic>Kernels</topic><topic>keyword propagation</topic><topic>Linear programming</topic><topic>Manifolds</topic><topic>Natural Language Processing</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Propagation</topic><topic>Reproducibility of Results</topic><topic>Semantics</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Similarity</topic><topic>spectral embedding</topic><topic>Spectral methods</topic><topic>string kernel</topic><topic>Strings</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Visual</topic><topic>visual words</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhiwu Lu</creatorcontrib><creatorcontrib>Ip, H H S</creatorcontrib><creatorcontrib>Yuxin Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhiwu Lu</au><au>Ip, H H S</au><au>Yuxin Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextual Kernel and Spectral Methods for Learning the Semantics of Images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>20</volume><issue>6</issue><spage>1739</spage><epage>1750</epage><pages>1739-1750</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents contextual kernel and spectral methods for learning the semantics of images that allow us to automatically annotate an image with keywords. First, to exploit the context of visual words within images for automatic image annotation, we define a novel spatial string kernel to quantify the similarity between images. Specifically, we represent each image as a 2-D sequence of visual words and measure the similarity between two 2-D sequences using the shared occurrences of s -length 1-D subsequences by decomposing each 2-D sequence into two orthogonal 1-D sequences. Based on our proposed spatial string kernel, we further formulate automatic image annotation as a contextual keyword propagation problem, which can be solved very efficiently by linear programming. Unlike the traditional relevance models that treat each keyword independently, the proposed contextual kernel method for keyword propagation takes into account the semantic context of annotation keywords and propagates multiple keywords simultaneously. Significantly, this type of semantic context can also be incorporated into spectral embedding for refining the annotations of images predicted by keyword propagation. Experiments on three standard image datasets demonstrate that our contextual kernel and spectral methods can achieve significantly better results than the state of the art.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21193376</pmid><doi>10.1109/TIP.2010.2103082</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2011-06, Vol.20 (6), p.1739-1750
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_868030394
source IEEE Electronic Library (IEL)
subjects Algorithms
Annotation refinement
Annotations
Applied sciences
Artificial Intelligence
Context
Correlation
Documentation - methods
Exact sciences and technology
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
Kernel
kernel methods
Kernels
keyword propagation
Linear programming
Manifolds
Natural Language Processing
Pattern Recognition, Automated - methods
Propagation
Reproducibility of Results
Semantics
Sensitivity and Specificity
Signal processing
Similarity
spectral embedding
Spectral methods
string kernel
Strings
Studies
Telecommunications and information theory
Training
Visual
visual words
Visualization
title Contextual Kernel and Spectral Methods for Learning the Semantics of Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextual%20Kernel%20and%20Spectral%20Methods%20for%20Learning%20the%20Semantics%20of%20Images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhiwu%20Lu&rft.date=2011-06-01&rft.volume=20&rft.issue=6&rft.spage=1739&rft.epage=1750&rft.pages=1739-1750&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2010.2103082&rft_dat=%3Cproquest_RIE%3E889443524%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867468390&rft_id=info:pmid/21193376&rft_ieee_id=5678649&rfr_iscdi=true