Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior
Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26mg/m2h to 4.11mg...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2011-03, Vol.187 (1-3), p.37-43 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1-3 |
container_start_page | 37 |
container_title | Journal of hazardous materials |
container_volume | 187 |
creator | Kim, Ki-Wook Lee, Byoung-Ho Kim, Sumin Kim, Hyun-Joong Yun, Ju-Ho Yoo, Seung-Eul Sohn, Jong Ryeul |
description | Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26mg/m2h to 4.11mg/m2h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30mg/m2h to 3.72mg/m2h and from 0.19mg/m2h to 8.74mg/m2h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50°C to 90°C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70°C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE). |
doi_str_mv | 10.1016/j.jhazmat.2010.07.075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867749578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438941000960X</els_id><sourcerecordid>1671427025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-cef6a50801f1af8bb30c585878670a8aee08e5f2b073a6fbd93af240f2195ff63</originalsourceid><addsrcrecordid>eNqFkd-L1DAQx4Mo3t7pn6D2Rc6XrpOmadKnQxZ_wcGBer6GaTo5s7TNmrSC_vWm7KpvHgyEmXzmOzN8GXvGYcuBN6_32_03_DXivK0g10DlkA_YhmslSiFE85BtQEBdCt3WZ-w8pT0AcCXrx-ysAiVaXvEN85-oX-zsw1QEV3y92RU0-pTW3MUwFhPOS8ShcENYYiqcHwbqi86Hnu4i9tgNtGalDeMhJD9TZkIscJnDGDqff_00U_QhPmGPHA6Jnp7eC3b77u2X3Yfy-ub9x92b69LKqp5LS65BCRq44-h01wmwUkutdKMANRKBJumqLp-Ajev6VqCranAVb6Vzjbhgl0fdQwzfF0qzyQdZGgacKCzJZB1Vt1Lp-0lZC9U2tczkq_-SvFG8rhRUKyqPqI0hpUjOHKIfMf40HMzqnNmbk3Nmdc6AyrH2PT-NWLqR-r9df6zKwMsTgMni4CJO1qd_nGirvILI3Isj5zAYvIuZuf2cJ8nsfguqWZWujgRlG354iiZZT5Ol3keys-mDv2fZ3y6Ew7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671427025</pqid></control><display><type>article</type><title>Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kim, Ki-Wook ; Lee, Byoung-Ho ; Kim, Sumin ; Kim, Hyun-Joong ; Yun, Ju-Ho ; Yoo, Seung-Eul ; Sohn, Jong Ryeul</creator><creatorcontrib>Kim, Ki-Wook ; Lee, Byoung-Ho ; Kim, Sumin ; Kim, Hyun-Joong ; Yun, Ju-Ho ; Yoo, Seung-Eul ; Sohn, Jong Ryeul</creatorcontrib><description>Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26mg/m2h to 4.11mg/m2h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30mg/m2h to 3.72mg/m2h and from 0.19mg/m2h to 8.74mg/m2h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50°C to 90°C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70°C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE).</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.07.075</identifier><identifier>PMID: 20739121</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>20 L small chamber ; Absorption ; Applied sciences ; Atmospheric pollution ; Automobile interior ; Automobiles ; Baking ; biocomposites ; biodegradability ; Biodegradable polymer ; Cassava ; cassava flour ; Chambers ; Emission ; emissions ; Emissions control ; emissions factor ; Exact sciences and technology ; Field and laboratory emission cell ; Flour ; furfural ; lactic acid ; Manihot esculenta ; pineapples ; Pollution ; polyethylene ; Polyethylenes ; polypropylenes ; pyrolysis ; Reduction ; succinic acid ; Temperature ; Thermo-extractor ; Volatile organic compounds ; Volatile Organic Compounds - chemistry</subject><ispartof>Journal of hazardous materials, 2011-03, Vol.187 (1-3), p.37-43</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-cef6a50801f1af8bb30c585878670a8aee08e5f2b073a6fbd93af240f2195ff63</citedby><cites>FETCH-LOGICAL-c524t-cef6a50801f1af8bb30c585878670a8aee08e5f2b073a6fbd93af240f2195ff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030438941000960X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23924273$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20739121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ki-Wook</creatorcontrib><creatorcontrib>Lee, Byoung-Ho</creatorcontrib><creatorcontrib>Kim, Sumin</creatorcontrib><creatorcontrib>Kim, Hyun-Joong</creatorcontrib><creatorcontrib>Yun, Ju-Ho</creatorcontrib><creatorcontrib>Yoo, Seung-Eul</creatorcontrib><creatorcontrib>Sohn, Jong Ryeul</creatorcontrib><title>Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26mg/m2h to 4.11mg/m2h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30mg/m2h to 3.72mg/m2h and from 0.19mg/m2h to 8.74mg/m2h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50°C to 90°C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70°C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE).</description><subject>20 L small chamber</subject><subject>Absorption</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Automobile interior</subject><subject>Automobiles</subject><subject>Baking</subject><subject>biocomposites</subject><subject>biodegradability</subject><subject>Biodegradable polymer</subject><subject>Cassava</subject><subject>cassava flour</subject><subject>Chambers</subject><subject>Emission</subject><subject>emissions</subject><subject>Emissions control</subject><subject>emissions factor</subject><subject>Exact sciences and technology</subject><subject>Field and laboratory emission cell</subject><subject>Flour</subject><subject>furfural</subject><subject>lactic acid</subject><subject>Manihot esculenta</subject><subject>pineapples</subject><subject>Pollution</subject><subject>polyethylene</subject><subject>Polyethylenes</subject><subject>polypropylenes</subject><subject>pyrolysis</subject><subject>Reduction</subject><subject>succinic acid</subject><subject>Temperature</subject><subject>Thermo-extractor</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - chemistry</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd-L1DAQx4Mo3t7pn6D2Rc6XrpOmadKnQxZ_wcGBer6GaTo5s7TNmrSC_vWm7KpvHgyEmXzmOzN8GXvGYcuBN6_32_03_DXivK0g10DlkA_YhmslSiFE85BtQEBdCt3WZ-w8pT0AcCXrx-ysAiVaXvEN85-oX-zsw1QEV3y92RU0-pTW3MUwFhPOS8ShcENYYiqcHwbqi86Hnu4i9tgNtGalDeMhJD9TZkIscJnDGDqff_00U_QhPmGPHA6Jnp7eC3b77u2X3Yfy-ub9x92b69LKqp5LS65BCRq44-h01wmwUkutdKMANRKBJumqLp-Ajev6VqCranAVb6Vzjbhgl0fdQwzfF0qzyQdZGgacKCzJZB1Vt1Lp-0lZC9U2tczkq_-SvFG8rhRUKyqPqI0hpUjOHKIfMf40HMzqnNmbk3Nmdc6AyrH2PT-NWLqR-r9df6zKwMsTgMni4CJO1qd_nGirvILI3Isj5zAYvIuZuf2cJ8nsfguqWZWujgRlG354iiZZT5Ol3keys-mDv2fZ3y6Ew7A</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Kim, Ki-Wook</creator><creator>Lee, Byoung-Ho</creator><creator>Kim, Sumin</creator><creator>Kim, Hyun-Joong</creator><creator>Yun, Ju-Ho</creator><creator>Yoo, Seung-Eul</creator><creator>Sohn, Jong Ryeul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>C1K</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110315</creationdate><title>Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior</title><author>Kim, Ki-Wook ; Lee, Byoung-Ho ; Kim, Sumin ; Kim, Hyun-Joong ; Yun, Ju-Ho ; Yoo, Seung-Eul ; Sohn, Jong Ryeul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-cef6a50801f1af8bb30c585878670a8aee08e5f2b073a6fbd93af240f2195ff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>20 L small chamber</topic><topic>Absorption</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Automobile interior</topic><topic>Automobiles</topic><topic>Baking</topic><topic>biocomposites</topic><topic>biodegradability</topic><topic>Biodegradable polymer</topic><topic>Cassava</topic><topic>cassava flour</topic><topic>Chambers</topic><topic>Emission</topic><topic>emissions</topic><topic>Emissions control</topic><topic>emissions factor</topic><topic>Exact sciences and technology</topic><topic>Field and laboratory emission cell</topic><topic>Flour</topic><topic>furfural</topic><topic>lactic acid</topic><topic>Manihot esculenta</topic><topic>pineapples</topic><topic>Pollution</topic><topic>polyethylene</topic><topic>Polyethylenes</topic><topic>polypropylenes</topic><topic>pyrolysis</topic><topic>Reduction</topic><topic>succinic acid</topic><topic>Temperature</topic><topic>Thermo-extractor</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ki-Wook</creatorcontrib><creatorcontrib>Lee, Byoung-Ho</creatorcontrib><creatorcontrib>Kim, Sumin</creatorcontrib><creatorcontrib>Kim, Hyun-Joong</creatorcontrib><creatorcontrib>Yun, Ju-Ho</creatorcontrib><creatorcontrib>Yoo, Seung-Eul</creatorcontrib><creatorcontrib>Sohn, Jong Ryeul</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ki-Wook</au><au>Lee, Byoung-Ho</au><au>Kim, Sumin</au><au>Kim, Hyun-Joong</au><au>Yun, Ju-Ho</au><au>Yoo, Seung-Eul</au><au>Sohn, Jong Ryeul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-03-15</date><risdate>2011</risdate><volume>187</volume><issue>1-3</issue><spage>37</spage><epage>43</epage><pages>37-43</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26mg/m2h to 4.11mg/m2h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30mg/m2h to 3.72mg/m2h and from 0.19mg/m2h to 8.74mg/m2h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50°C to 90°C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70°C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE).</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20739121</pmid><doi>10.1016/j.jhazmat.2010.07.075</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2011-03, Vol.187 (1-3), p.37-43 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_867749578 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 20 L small chamber Absorption Applied sciences Atmospheric pollution Automobile interior Automobiles Baking biocomposites biodegradability Biodegradable polymer Cassava cassava flour Chambers Emission emissions Emissions control emissions factor Exact sciences and technology Field and laboratory emission cell Flour furfural lactic acid Manihot esculenta pineapples Pollution polyethylene Polyethylenes polypropylenes pyrolysis Reduction succinic acid Temperature Thermo-extractor Volatile organic compounds Volatile Organic Compounds - chemistry |
title | Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20VOC%20emission%20from%20natural%20flours%20filled%20biodegradable%20bio-composites%20for%20automobile%20interior&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Kim,%20Ki-Wook&rft.date=2011-03-15&rft.volume=187&rft.issue=1-3&rft.spage=37&rft.epage=43&rft.pages=37-43&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.07.075&rft_dat=%3Cproquest_cross%3E1671427025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671427025&rft_id=info:pmid/20739121&rft_els_id=S030438941000960X&rfr_iscdi=true |