Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris

► NiO nanoparticles have adverse effects on growth of algal cells. ► Living algae have the ability to accelerate the aggregation of NPs as well as to reduce NiO nanoparticles to zero valence nickel. ► Green microalgae may be promising organisms for bioremediating nano-pollution. Adverse effects of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2011-04, Vol.83 (4), p.510-516
Hauptverfasser: Gong, Ning, Shao, Kuishuang, Feng, Wei, Lin, Zhengzhi, Liang, Changhua, Sun, Yeqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 4
container_start_page 510
container_title Chemosphere (Oxford)
container_volume 83
creator Gong, Ning
Shao, Kuishuang
Feng, Wei
Lin, Zhengzhi
Liang, Changhua
Sun, Yeqing
description ► NiO nanoparticles have adverse effects on growth of algal cells. ► Living algae have the ability to accelerate the aggregation of NPs as well as to reduce NiO nanoparticles to zero valence nickel. ► Green microalgae may be promising organisms for bioremediating nano-pollution. Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorella vulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC 50 values of 32.28 mg NiO L −1. Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system.
doi_str_mv 10.1016/j.chemosphere.2010.12.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867741471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653510014645</els_id><sourcerecordid>867741471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-f408a5ef800d9e3939207a117831e13f6665f7fc6074f55fe4cfed76c02065713</originalsourceid><addsrcrecordid>eNqNkUuv0zAUhC0E4pYLfwGZBYJNio_jR7yEipd0JTawxXKdY-qSxMVOr-i_x6HlsUKsLI2-scczhDwBtgYG6sV-7Xc4pnLYYcY1Z4vO10yaO2QFnTYNcNPdJSvGhGyUbOUVeVDKnrFqluY-ueLAQQluVuTzq5jm9D36OJ9oCnSK_isOtCo90slN6eDyHP2Ahbqpp9uYmowj9tHNMU10e6Jj9Dm54YtDutkNKeMwOHp7rEKO5SG5F9xQ8NHlvCaf3rz-uHnX3Hx4-37z8qbxQsPcBME6JzF0jPUGW9MazrQD0F0LCG1QSsmgg1dMiyBlQOED9lp5xpmSGtpr8ux87yGnb0cssx1j8UuUCdOx2E5pLUD8JJ__kwTVKSFAcVlRc0brB0vJGOwhx9HlkwVmlyHs3v41hF2GsMBtHaJ6H1-eOW5rXb-dv5qvwNML4Ip3Q8hu8rH84QRrtVZL3s2Zw1rfbcRsi484-TpBRj_bPsX_iPMDQLSs8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686441625</pqid></control><display><type>article</type><title>Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gong, Ning ; Shao, Kuishuang ; Feng, Wei ; Lin, Zhengzhi ; Liang, Changhua ; Sun, Yeqing</creator><creatorcontrib>Gong, Ning ; Shao, Kuishuang ; Feng, Wei ; Lin, Zhengzhi ; Liang, Changhua ; Sun, Yeqing</creatorcontrib><description>► NiO nanoparticles have adverse effects on growth of algal cells. ► Living algae have the ability to accelerate the aggregation of NPs as well as to reduce NiO nanoparticles to zero valence nickel. ► Green microalgae may be promising organisms for bioremediating nano-pollution. Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorella vulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC 50 values of 32.28 mg NiO L −1. Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2010.12.059</identifier><identifier>PMID: 21216429</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agglomeration ; Algae ; Animal, plant and microbial ecology ; Applied ecology ; Biodegradation of pollutants ; Biodegradation, Environmental ; Biological and medical sciences ; Bioremediation ; Biotechnology ; Chlorella vulgaris ; Chlorella vulgaris - drug effects ; Chlorella vulgaris - physiology ; Chlorella vulgaris - ultrastructure ; Chlorellavulgaris ; Ecotoxicity ; Ecotoxicology, biological effects of pollution ; Environment and pollution ; Fundamental and applied biological sciences. Psychology ; General aspects ; Growth inhibition ; Growth Inhibitors - metabolism ; Growth Inhibitors - toxicity ; Industrial applications and implications. Economical aspects ; Marine ; Metal Nanoparticles - toxicity ; Metal Nanoparticles - ultrastructure ; Morphological changes ; Nanoparticles ; Nanostructure ; Nickel ; Nickel - metabolism ; Nickel - toxicity ; Nickel oxides ; Reduction ; Water Pollutants, Chemical - metabolism ; Water Pollutants, Chemical - toxicity ; X-rays</subject><ispartof>Chemosphere (Oxford), 2011-04, Vol.83 (4), p.510-516</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><rights>Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-f408a5ef800d9e3939207a117831e13f6665f7fc6074f55fe4cfed76c02065713</citedby><cites>FETCH-LOGICAL-c471t-f408a5ef800d9e3939207a117831e13f6665f7fc6074f55fe4cfed76c02065713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653510014645$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24037761$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21216429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Ning</creatorcontrib><creatorcontrib>Shao, Kuishuang</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Lin, Zhengzhi</creatorcontrib><creatorcontrib>Liang, Changhua</creatorcontrib><creatorcontrib>Sun, Yeqing</creatorcontrib><title>Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>► NiO nanoparticles have adverse effects on growth of algal cells. ► Living algae have the ability to accelerate the aggregation of NPs as well as to reduce NiO nanoparticles to zero valence nickel. ► Green microalgae may be promising organisms for bioremediating nano-pollution. Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorella vulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC 50 values of 32.28 mg NiO L −1. Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system.</description><subject>Agglomeration</subject><subject>Algae</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biodegradation of pollutants</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Chlorella vulgaris</subject><subject>Chlorella vulgaris - drug effects</subject><subject>Chlorella vulgaris - physiology</subject><subject>Chlorella vulgaris - ultrastructure</subject><subject>Chlorellavulgaris</subject><subject>Ecotoxicity</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environment and pollution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Growth inhibition</subject><subject>Growth Inhibitors - metabolism</subject><subject>Growth Inhibitors - toxicity</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Marine</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Morphological changes</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Nickel - metabolism</subject><subject>Nickel - toxicity</subject><subject>Nickel oxides</subject><subject>Reduction</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water Pollutants, Chemical - toxicity</subject><subject>X-rays</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuv0zAUhC0E4pYLfwGZBYJNio_jR7yEipd0JTawxXKdY-qSxMVOr-i_x6HlsUKsLI2-scczhDwBtgYG6sV-7Xc4pnLYYcY1Z4vO10yaO2QFnTYNcNPdJSvGhGyUbOUVeVDKnrFqluY-ueLAQQluVuTzq5jm9D36OJ9oCnSK_isOtCo90slN6eDyHP2Ahbqpp9uYmowj9tHNMU10e6Jj9Dm54YtDutkNKeMwOHp7rEKO5SG5F9xQ8NHlvCaf3rz-uHnX3Hx4-37z8qbxQsPcBME6JzF0jPUGW9MazrQD0F0LCG1QSsmgg1dMiyBlQOED9lp5xpmSGtpr8ux87yGnb0cssx1j8UuUCdOx2E5pLUD8JJ__kwTVKSFAcVlRc0brB0vJGOwhx9HlkwVmlyHs3v41hF2GsMBtHaJ6H1-eOW5rXb-dv5qvwNML4Ip3Q8hu8rH84QRrtVZL3s2Zw1rfbcRsi484-TpBRj_bPsX_iPMDQLSs8Q</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Gong, Ning</creator><creator>Shao, Kuishuang</creator><creator>Feng, Wei</creator><creator>Lin, Zhengzhi</creator><creator>Liang, Changhua</creator><creator>Sun, Yeqing</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope></search><sort><creationdate>20110401</creationdate><title>Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris</title><author>Gong, Ning ; Shao, Kuishuang ; Feng, Wei ; Lin, Zhengzhi ; Liang, Changhua ; Sun, Yeqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-f408a5ef800d9e3939207a117831e13f6665f7fc6074f55fe4cfed76c02065713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agglomeration</topic><topic>Algae</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biodegradation of pollutants</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Chlorella vulgaris</topic><topic>Chlorella vulgaris - drug effects</topic><topic>Chlorella vulgaris - physiology</topic><topic>Chlorella vulgaris - ultrastructure</topic><topic>Chlorellavulgaris</topic><topic>Ecotoxicity</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environment and pollution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Growth inhibition</topic><topic>Growth Inhibitors - metabolism</topic><topic>Growth Inhibitors - toxicity</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Marine</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Morphological changes</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Nickel - metabolism</topic><topic>Nickel - toxicity</topic><topic>Nickel oxides</topic><topic>Reduction</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water Pollutants, Chemical - toxicity</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Ning</creatorcontrib><creatorcontrib>Shao, Kuishuang</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Lin, Zhengzhi</creatorcontrib><creatorcontrib>Liang, Changhua</creatorcontrib><creatorcontrib>Sun, Yeqing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Ning</au><au>Shao, Kuishuang</au><au>Feng, Wei</au><au>Lin, Zhengzhi</au><au>Liang, Changhua</au><au>Sun, Yeqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>83</volume><issue>4</issue><spage>510</spage><epage>516</epage><pages>510-516</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>► NiO nanoparticles have adverse effects on growth of algal cells. ► Living algae have the ability to accelerate the aggregation of NPs as well as to reduce NiO nanoparticles to zero valence nickel. ► Green microalgae may be promising organisms for bioremediating nano-pollution. Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorella vulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC 50 values of 32.28 mg NiO L −1. Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21216429</pmid><doi>10.1016/j.chemosphere.2010.12.059</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2011-04, Vol.83 (4), p.510-516
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_867741471
source MEDLINE; Elsevier ScienceDirect Journals
subjects Agglomeration
Algae
Animal, plant and microbial ecology
Applied ecology
Biodegradation of pollutants
Biodegradation, Environmental
Biological and medical sciences
Bioremediation
Biotechnology
Chlorella vulgaris
Chlorella vulgaris - drug effects
Chlorella vulgaris - physiology
Chlorella vulgaris - ultrastructure
Chlorellavulgaris
Ecotoxicity
Ecotoxicology, biological effects of pollution
Environment and pollution
Fundamental and applied biological sciences. Psychology
General aspects
Growth inhibition
Growth Inhibitors - metabolism
Growth Inhibitors - toxicity
Industrial applications and implications. Economical aspects
Marine
Metal Nanoparticles - toxicity
Metal Nanoparticles - ultrastructure
Morphological changes
Nanoparticles
Nanostructure
Nickel
Nickel - metabolism
Nickel - toxicity
Nickel oxides
Reduction
Water Pollutants, Chemical - metabolism
Water Pollutants, Chemical - toxicity
X-rays
title Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotoxicity%20of%20nickel%20oxide%20nanoparticles%20and%20bio-remediation%20by%20microalgae%20Chlorella%20vulgaris&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Gong,%20Ning&rft.date=2011-04-01&rft.volume=83&rft.issue=4&rft.spage=510&rft.epage=516&rft.pages=510-516&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2010.12.059&rft_dat=%3Cproquest_cross%3E867741471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686441625&rft_id=info:pmid/21216429&rft_els_id=S0045653510014645&rfr_iscdi=true