Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices

▶ Interface chambers are superior to submerged types in slice models of hypoxia. ▶ A new Peltier-chamber design allows for active temperature control. ▶ Remote operability minimizes slice distortions. ▶ Interoperator reproducibility of experiments is enhanced by better slice protection. A new remote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2010-10, Vol.193 (1), p.77-81
Hauptverfasser: Wölfer, J., Speckmann, E.-J., Wassmann, H., Gorji, A., Greiner, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 77
container_title Journal of neuroscience methods
container_volume 193
creator Wölfer, J.
Speckmann, E.-J.
Wassmann, H.
Gorji, A.
Greiner, C.
description ▶ Interface chambers are superior to submerged types in slice models of hypoxia. ▶ A new Peltier-chamber design allows for active temperature control. ▶ Remote operability minimizes slice distortions. ▶ Interoperator reproducibility of experiments is enhanced by better slice protection. A new remote-controlled interface-type chamber was designed in order to conduct experiments in brain slices involving gas, fluid, and temperature changes with as little tissue manipulation as possible. The chamber allows for extremely quick changes between different fluid and/or gaseous phases and for active cooling as well as heating by using a set of electromechanical valves and Peltier elements. The design drawings are complemented by exemplary tests of temperature and gas changes, and electrophysiological recordings of slices manipulated with gas and fluid alterations were used to test the efficacy and accuracy of the design. Changing between normoxia and anoxia needs less than 30 s, while the readjustment of the chamber to a new, preset temperature is accomplished in about 1 min. Supplementary data provide a proposal for the electronic circuit diagram. This chamber design should simplify data acquisition in interface environments.
doi_str_mv 10.1016/j.jneumeth.2010.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867739935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027010004747</els_id><sourcerecordid>757460798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a046baf4adc2fc9f8f3b662dd52467a31ae6f57aec89fbe31371f63f1bd43a3d3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCX6h849IsdpzYzg1UFahUCQmBxM2a2OOuV0m82E4r_j1ebcu1p9GMvpn3NI-QS862nHH5cb_dL7jOWHbbltUh01vGu1dkw7VqG6n079dkU8G-Ya1iZ-Q85z1jrBuYfEvOWqYZk1xvyPID51iQ5sdQ7C4s9zR6WnA-YIKyJryi95AxrvmKwuIo_FmPDT3s6pSGhQKd4mPzEKfqpfYFkweL1O5gHjFRHxMdE1QwT8FifkfeeJgyvn-qF-TXl5uf19-au-9fb68_3zVWDENpgHVyBN-Bs623g9dejFK2zvVtJxUIDih9rwCtHvyIggvFvRSej64TIJy4IB9Odw8pVsu5mDlki9MEy9G_0VKpqiT6F0nVq04yNehKyhNpU8w5oTeHFGZIfw1n5hiK2ZvnUMwxFMO0qaHUxcsniXWc0f1fe06hAp9OANaXPARMJtuAi0UXEtpiXAwvafwD7SujfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757460798</pqid></control><display><type>article</type><title>Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wölfer, J. ; Speckmann, E.-J. ; Wassmann, H. ; Gorji, A. ; Greiner, C.</creator><creatorcontrib>Wölfer, J. ; Speckmann, E.-J. ; Wassmann, H. ; Gorji, A. ; Greiner, C.</creatorcontrib><description>▶ Interface chambers are superior to submerged types in slice models of hypoxia. ▶ A new Peltier-chamber design allows for active temperature control. ▶ Remote operability minimizes slice distortions. ▶ Interoperator reproducibility of experiments is enhanced by better slice protection. A new remote-controlled interface-type chamber was designed in order to conduct experiments in brain slices involving gas, fluid, and temperature changes with as little tissue manipulation as possible. The chamber allows for extremely quick changes between different fluid and/or gaseous phases and for active cooling as well as heating by using a set of electromechanical valves and Peltier elements. The design drawings are complemented by exemplary tests of temperature and gas changes, and electrophysiological recordings of slices manipulated with gas and fluid alterations were used to test the efficacy and accuracy of the design. Changing between normoxia and anoxia needs less than 30 s, while the readjustment of the chamber to a new, preset temperature is accomplished in about 1 min. Supplementary data provide a proposal for the electronic circuit diagram. This chamber design should simplify data acquisition in interface environments.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2010.08.014</identifier><identifier>PMID: 20800618</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Anoxic depolarization ; Brain slice ; Diffusion Chambers, Culture - instrumentation ; Diffusion Chambers, Culture - methods ; Electrophysiology ; Electrophysiology - instrumentation ; Electrophysiology - methods ; Hippocampus - physiology ; Hypoxia ; Interface chamber ; Ischemia ; Rats ; Rats, Wistar ; Temperature</subject><ispartof>Journal of neuroscience methods, 2010-10, Vol.193 (1), p.77-81</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a046baf4adc2fc9f8f3b662dd52467a31ae6f57aec89fbe31371f63f1bd43a3d3</citedby><cites>FETCH-LOGICAL-c399t-a046baf4adc2fc9f8f3b662dd52467a31ae6f57aec89fbe31371f63f1bd43a3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jneumeth.2010.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20800618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wölfer, J.</creatorcontrib><creatorcontrib>Speckmann, E.-J.</creatorcontrib><creatorcontrib>Wassmann, H.</creatorcontrib><creatorcontrib>Gorji, A.</creatorcontrib><creatorcontrib>Greiner, C.</creatorcontrib><title>Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>▶ Interface chambers are superior to submerged types in slice models of hypoxia. ▶ A new Peltier-chamber design allows for active temperature control. ▶ Remote operability minimizes slice distortions. ▶ Interoperator reproducibility of experiments is enhanced by better slice protection. A new remote-controlled interface-type chamber was designed in order to conduct experiments in brain slices involving gas, fluid, and temperature changes with as little tissue manipulation as possible. The chamber allows for extremely quick changes between different fluid and/or gaseous phases and for active cooling as well as heating by using a set of electromechanical valves and Peltier elements. The design drawings are complemented by exemplary tests of temperature and gas changes, and electrophysiological recordings of slices manipulated with gas and fluid alterations were used to test the efficacy and accuracy of the design. Changing between normoxia and anoxia needs less than 30 s, while the readjustment of the chamber to a new, preset temperature is accomplished in about 1 min. Supplementary data provide a proposal for the electronic circuit diagram. This chamber design should simplify data acquisition in interface environments.</description><subject>Animals</subject><subject>Anoxic depolarization</subject><subject>Brain slice</subject><subject>Diffusion Chambers, Culture - instrumentation</subject><subject>Diffusion Chambers, Culture - methods</subject><subject>Electrophysiology</subject><subject>Electrophysiology - instrumentation</subject><subject>Electrophysiology - methods</subject><subject>Hippocampus - physiology</subject><subject>Hypoxia</subject><subject>Interface chamber</subject><subject>Ischemia</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Temperature</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCX6h849IsdpzYzg1UFahUCQmBxM2a2OOuV0m82E4r_j1ebcu1p9GMvpn3NI-QS862nHH5cb_dL7jOWHbbltUh01vGu1dkw7VqG6n079dkU8G-Ya1iZ-Q85z1jrBuYfEvOWqYZk1xvyPID51iQ5sdQ7C4s9zR6WnA-YIKyJryi95AxrvmKwuIo_FmPDT3s6pSGhQKd4mPzEKfqpfYFkweL1O5gHjFRHxMdE1QwT8FifkfeeJgyvn-qF-TXl5uf19-au-9fb68_3zVWDENpgHVyBN-Bs623g9dejFK2zvVtJxUIDih9rwCtHvyIggvFvRSej64TIJy4IB9Odw8pVsu5mDlki9MEy9G_0VKpqiT6F0nVq04yNehKyhNpU8w5oTeHFGZIfw1n5hiK2ZvnUMwxFMO0qaHUxcsniXWc0f1fe06hAp9OANaXPARMJtuAi0UXEtpiXAwvafwD7SujfA</recordid><startdate>20101030</startdate><enddate>20101030</enddate><creator>Wölfer, J.</creator><creator>Speckmann, E.-J.</creator><creator>Wassmann, H.</creator><creator>Gorji, A.</creator><creator>Greiner, C.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20101030</creationdate><title>Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices</title><author>Wölfer, J. ; Speckmann, E.-J. ; Wassmann, H. ; Gorji, A. ; Greiner, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a046baf4adc2fc9f8f3b662dd52467a31ae6f57aec89fbe31371f63f1bd43a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Anoxic depolarization</topic><topic>Brain slice</topic><topic>Diffusion Chambers, Culture - instrumentation</topic><topic>Diffusion Chambers, Culture - methods</topic><topic>Electrophysiology</topic><topic>Electrophysiology - instrumentation</topic><topic>Electrophysiology - methods</topic><topic>Hippocampus - physiology</topic><topic>Hypoxia</topic><topic>Interface chamber</topic><topic>Ischemia</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wölfer, J.</creatorcontrib><creatorcontrib>Speckmann, E.-J.</creatorcontrib><creatorcontrib>Wassmann, H.</creatorcontrib><creatorcontrib>Gorji, A.</creatorcontrib><creatorcontrib>Greiner, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wölfer, J.</au><au>Speckmann, E.-J.</au><au>Wassmann, H.</au><au>Gorji, A.</au><au>Greiner, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2010-10-30</date><risdate>2010</risdate><volume>193</volume><issue>1</issue><spage>77</spage><epage>81</epage><pages>77-81</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>▶ Interface chambers are superior to submerged types in slice models of hypoxia. ▶ A new Peltier-chamber design allows for active temperature control. ▶ Remote operability minimizes slice distortions. ▶ Interoperator reproducibility of experiments is enhanced by better slice protection. A new remote-controlled interface-type chamber was designed in order to conduct experiments in brain slices involving gas, fluid, and temperature changes with as little tissue manipulation as possible. The chamber allows for extremely quick changes between different fluid and/or gaseous phases and for active cooling as well as heating by using a set of electromechanical valves and Peltier elements. The design drawings are complemented by exemplary tests of temperature and gas changes, and electrophysiological recordings of slices manipulated with gas and fluid alterations were used to test the efficacy and accuracy of the design. Changing between normoxia and anoxia needs less than 30 s, while the readjustment of the chamber to a new, preset temperature is accomplished in about 1 min. Supplementary data provide a proposal for the electronic circuit diagram. This chamber design should simplify data acquisition in interface environments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20800618</pmid><doi>10.1016/j.jneumeth.2010.08.014</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2010-10, Vol.193 (1), p.77-81
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_867739935
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Anoxic depolarization
Brain slice
Diffusion Chambers, Culture - instrumentation
Diffusion Chambers, Culture - methods
Electrophysiology
Electrophysiology - instrumentation
Electrophysiology - methods
Hippocampus - physiology
Hypoxia
Interface chamber
Ischemia
Rats
Rats, Wistar
Temperature
title Remote switching of temperature, gaseous, and aqueous phase in a low-volume interface chamber for brain slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20switching%20of%20temperature,%20gaseous,%20and%20aqueous%20phase%20in%20a%20low-volume%20interface%20chamber%20for%20brain%20slices&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=W%C3%B6lfer,%20J.&rft.date=2010-10-30&rft.volume=193&rft.issue=1&rft.spage=77&rft.epage=81&rft.pages=77-81&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2010.08.014&rft_dat=%3Cproquest_cross%3E757460798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757460798&rft_id=info:pmid/20800618&rft_els_id=S0165027010004747&rfr_iscdi=true