A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition

The schematic illustration of stepwise fabrication process of the glucose biosensors. [Display omitted] ► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2011-06, Vol.84 (2), p.454-461
Hauptverfasser: Che, Xin, Yuan, Ruo, Chai, Yaqin, Li, Jingjing, Song, Zhongju, Li, Wenjuan, Zhong, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 2
container_start_page 454
container_title Colloids and surfaces, B, Biointerfaces
container_volume 84
creator Che, Xin
Yuan, Ruo
Chai, Yaqin
Li, Jingjing
Song, Zhongju
Li, Wenjuan
Zhong, Xia
description The schematic illustration of stepwise fabrication process of the glucose biosensors. [Display omitted] ► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose. In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5 μM to 1.12 mM with a detection limit of 0.47 μM (S/N = 3), a high sensitivity of 23.4 μA mM −1 cm −2, and a fast response time. The apparent Michaelis–Menten constant ( K M app ) was 1.89 mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.
doi_str_mv 10.1016/j.colsurfb.2011.01.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867733325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776511000610</els_id><sourcerecordid>867733325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</originalsourceid><addsrcrecordid>eNqFkc1uEzEQgC0EoqHwCmVvcNngf29uVBF_UiUqQc-W7Z1tHDnr4Nml6o1HQOINeRIc0nKk0siW7W_Go_kIOWN0ySjTb7bLkBPOZfBLThlb0hqSPSIL1hnRSqHNY7KgK25aY7Q6Ic8Qt5RSLpl5Sk44E0J2WizIz_PmOs0hIzQ-1nXEXBrvEPomj03YxCmjG3__-HVZZsToxsanGep5N6cp3riUmuCKr-zoxjzNHrA-bnJK-aa5nNb5733YuDhiM-Syq4X9ba0NLU6wbyBBmEruYZ8xTjGPz8mTwSWEF3f7Kbl6_-7r-mN78fnDp_X5RRsU51MrpHJhFZyCQfsenA-s15R1yvhOeB1gEMFw2WtneuN7yRQV_WoloHO-c2wlTsmrY919yd9mwMnuIgZIyY2QZ7SdNkYIwdXDpOp4x6XilXz9X5IZQ4WqEmRF9RENJSMWGOy-xJ0rt5ZRezBst_besD0YtrSGZDXx7O6P2ddh_ku7V1qBl0dgcNm66xLRXn2pFXTVTw2jhzbfHgmo8_0eoVgMEcYAfSzVhu1zfKiLP43UytY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770350244</pqid></control><display><type>article</type><title>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Che, Xin ; Yuan, Ruo ; Chai, Yaqin ; Li, Jingjing ; Song, Zhongju ; Li, Wenjuan ; Zhong, Xia</creator><creatorcontrib>Che, Xin ; Yuan, Ruo ; Chai, Yaqin ; Li, Jingjing ; Song, Zhongju ; Li, Wenjuan ; Zhong, Xia</creatorcontrib><description>The schematic illustration of stepwise fabrication process of the glucose biosensors. [Display omitted] ► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose. In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5 μM to 1.12 mM with a detection limit of 0.47 μM (S/N = 3), a high sensitivity of 23.4 μA mM −1 cm −2, and a fast response time. The apparent Michaelis–Menten constant ( K M app ) was 1.89 mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2011.01.041</identifier><identifier>PMID: 21334863</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biosensing Techniques ; Biosensors ; Carbon ; Chitosan ; Chitosan - chemistry ; Cobalt - chemistry ; colloids ; detection limit ; dielectric spectroscopy ; Electrochemical impedance spectroscopy ; electrochemistry ; Electrochemistry - methods ; Electrodeposition ; Electrodes ; enzyme kinetics ; Ferrocyanides - chemistry ; Fourier transform infrared spectroscopy ; Glucose ; Glucose - analysis ; glucose oxidase ; gold ; Gold - chemistry ; Hollow PtCo nanochains ; Microscopy, Electron, Scanning ; Multiwall carbon nanotubes ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotubes, Carbon - chemistry ; Platinum - chemistry ; Prussian blue ; Scanning electron microscopy ; Surface Properties</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2011-06, Vol.84 (2), p.454-461</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</citedby><cites>FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776511000610$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21334863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Che, Xin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><creatorcontrib>Chai, Yaqin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Song, Zhongju</creatorcontrib><creatorcontrib>Li, Wenjuan</creatorcontrib><creatorcontrib>Zhong, Xia</creatorcontrib><title>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>The schematic illustration of stepwise fabrication process of the glucose biosensors. [Display omitted] ► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose. In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5 μM to 1.12 mM with a detection limit of 0.47 μM (S/N = 3), a high sensitivity of 23.4 μA mM −1 cm −2, and a fast response time. The apparent Michaelis–Menten constant ( K M app ) was 1.89 mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.</description><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Cobalt - chemistry</subject><subject>colloids</subject><subject>detection limit</subject><subject>dielectric spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>electrochemistry</subject><subject>Electrochemistry - methods</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>enzyme kinetics</subject><subject>Ferrocyanides - chemistry</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Glucose</subject><subject>Glucose - analysis</subject><subject>glucose oxidase</subject><subject>gold</subject><subject>Gold - chemistry</subject><subject>Hollow PtCo nanochains</subject><subject>Microscopy, Electron, Scanning</subject><subject>Multiwall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Platinum - chemistry</subject><subject>Prussian blue</subject><subject>Scanning electron microscopy</subject><subject>Surface Properties</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEQgC0EoqHwCmVvcNngf29uVBF_UiUqQc-W7Z1tHDnr4Nml6o1HQOINeRIc0nKk0siW7W_Go_kIOWN0ySjTb7bLkBPOZfBLThlb0hqSPSIL1hnRSqHNY7KgK25aY7Q6Ic8Qt5RSLpl5Sk44E0J2WizIz_PmOs0hIzQ-1nXEXBrvEPomj03YxCmjG3__-HVZZsToxsanGep5N6cp3riUmuCKr-zoxjzNHrA-bnJK-aa5nNb5733YuDhiM-Syq4X9ba0NLU6wbyBBmEruYZ8xTjGPz8mTwSWEF3f7Kbl6_-7r-mN78fnDp_X5RRsU51MrpHJhFZyCQfsenA-s15R1yvhOeB1gEMFw2WtneuN7yRQV_WoloHO-c2wlTsmrY919yd9mwMnuIgZIyY2QZ7SdNkYIwdXDpOp4x6XilXz9X5IZQ4WqEmRF9RENJSMWGOy-xJ0rt5ZRezBst_besD0YtrSGZDXx7O6P2ddh_ku7V1qBl0dgcNm66xLRXn2pFXTVTw2jhzbfHgmo8_0eoVgMEcYAfSzVhu1zfKiLP43UytY</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Che, Xin</creator><creator>Yuan, Ruo</creator><creator>Chai, Yaqin</creator><creator>Li, Jingjing</creator><creator>Song, Zhongju</creator><creator>Li, Wenjuan</creator><creator>Zhong, Xia</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110601</creationdate><title>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</title><author>Che, Xin ; Yuan, Ruo ; Chai, Yaqin ; Li, Jingjing ; Song, Zhongju ; Li, Wenjuan ; Zhong, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Cobalt - chemistry</topic><topic>colloids</topic><topic>detection limit</topic><topic>dielectric spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>electrochemistry</topic><topic>Electrochemistry - methods</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>enzyme kinetics</topic><topic>Ferrocyanides - chemistry</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Glucose</topic><topic>Glucose - analysis</topic><topic>glucose oxidase</topic><topic>gold</topic><topic>Gold - chemistry</topic><topic>Hollow PtCo nanochains</topic><topic>Microscopy, Electron, Scanning</topic><topic>Multiwall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Platinum - chemistry</topic><topic>Prussian blue</topic><topic>Scanning electron microscopy</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Xin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><creatorcontrib>Chai, Yaqin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Song, Zhongju</creatorcontrib><creatorcontrib>Li, Wenjuan</creatorcontrib><creatorcontrib>Zhong, Xia</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Xin</au><au>Yuan, Ruo</au><au>Chai, Yaqin</au><au>Li, Jingjing</au><au>Song, Zhongju</au><au>Li, Wenjuan</au><au>Zhong, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>84</volume><issue>2</issue><spage>454</spage><epage>461</epage><pages>454-461</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>The schematic illustration of stepwise fabrication process of the glucose biosensors. [Display omitted] ► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose. In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5 μM to 1.12 mM with a detection limit of 0.47 μM (S/N = 3), a high sensitivity of 23.4 μA mM −1 cm −2, and a fast response time. The apparent Michaelis–Menten constant ( K M app ) was 1.89 mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21334863</pmid><doi>10.1016/j.colsurfb.2011.01.041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2011-06, Vol.84 (2), p.454-461
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_867733325
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biosensing Techniques
Biosensors
Carbon
Chitosan
Chitosan - chemistry
Cobalt - chemistry
colloids
detection limit
dielectric spectroscopy
Electrochemical impedance spectroscopy
electrochemistry
Electrochemistry - methods
Electrodeposition
Electrodes
enzyme kinetics
Ferrocyanides - chemistry
Fourier transform infrared spectroscopy
Glucose
Glucose - analysis
glucose oxidase
gold
Gold - chemistry
Hollow PtCo nanochains
Microscopy, Electron, Scanning
Multiwall carbon nanotubes
Nanocomposites
Nanomaterials
Nanostructure
Nanotubes, Carbon - chemistry
Platinum - chemistry
Prussian blue
Scanning electron microscopy
Surface Properties
title A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20glucose%20biosensor%20based%20on%20chitosan%E2%80%93Prussian%20blue%E2%80%93multiwall%20carbon%20nanotubes%E2%80%93hollow%20PtCo%20nanochains%20formed%20by%20one-step%20electrodeposition&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Che,%20Xin&rft.date=2011-06-01&rft.volume=84&rft.issue=2&rft.spage=454&rft.epage=461&rft.pages=454-461&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2011.01.041&rft_dat=%3Cproquest_cross%3E867733325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770350244&rft_id=info:pmid/21334863&rft_els_id=S0927776511000610&rfr_iscdi=true