A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition
The schematic illustration of stepwise fabrication process of the glucose biosensors. [Display omitted] ► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and perf...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2011-06, Vol.84 (2), p.454-461 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 2 |
container_start_page | 454 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 84 |
creator | Che, Xin Yuan, Ruo Chai, Yaqin Li, Jingjing Song, Zhongju Li, Wenjuan Zhong, Xia |
description | The schematic illustration of stepwise fabrication process of the glucose biosensors.
[Display omitted]
► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose.
In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5
μM to 1.12
mM with a detection limit of 0.47
μM (S/N
=
3), a high sensitivity of 23.4
μA
mM
−1
cm
−2, and a fast response time. The apparent Michaelis–Menten constant (
K
M
app
) was 1.89
mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility. |
doi_str_mv | 10.1016/j.colsurfb.2011.01.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867733325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776511000610</els_id><sourcerecordid>867733325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</originalsourceid><addsrcrecordid>eNqFkc1uEzEQgC0EoqHwCmVvcNngf29uVBF_UiUqQc-W7Z1tHDnr4Nml6o1HQOINeRIc0nKk0siW7W_Go_kIOWN0ySjTb7bLkBPOZfBLThlb0hqSPSIL1hnRSqHNY7KgK25aY7Q6Ic8Qt5RSLpl5Sk44E0J2WizIz_PmOs0hIzQ-1nXEXBrvEPomj03YxCmjG3__-HVZZsToxsanGep5N6cp3riUmuCKr-zoxjzNHrA-bnJK-aa5nNb5733YuDhiM-Syq4X9ba0NLU6wbyBBmEruYZ8xTjGPz8mTwSWEF3f7Kbl6_-7r-mN78fnDp_X5RRsU51MrpHJhFZyCQfsenA-s15R1yvhOeB1gEMFw2WtneuN7yRQV_WoloHO-c2wlTsmrY919yd9mwMnuIgZIyY2QZ7SdNkYIwdXDpOp4x6XilXz9X5IZQ4WqEmRF9RENJSMWGOy-xJ0rt5ZRezBst_besD0YtrSGZDXx7O6P2ddh_ku7V1qBl0dgcNm66xLRXn2pFXTVTw2jhzbfHgmo8_0eoVgMEcYAfSzVhu1zfKiLP43UytY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770350244</pqid></control><display><type>article</type><title>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Che, Xin ; Yuan, Ruo ; Chai, Yaqin ; Li, Jingjing ; Song, Zhongju ; Li, Wenjuan ; Zhong, Xia</creator><creatorcontrib>Che, Xin ; Yuan, Ruo ; Chai, Yaqin ; Li, Jingjing ; Song, Zhongju ; Li, Wenjuan ; Zhong, Xia</creatorcontrib><description>The schematic illustration of stepwise fabrication process of the glucose biosensors.
[Display omitted]
► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose.
In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5
μM to 1.12
mM with a detection limit of 0.47
μM (S/N
=
3), a high sensitivity of 23.4
μA
mM
−1
cm
−2, and a fast response time. The apparent Michaelis–Menten constant (
K
M
app
) was 1.89
mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2011.01.041</identifier><identifier>PMID: 21334863</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biosensing Techniques ; Biosensors ; Carbon ; Chitosan ; Chitosan - chemistry ; Cobalt - chemistry ; colloids ; detection limit ; dielectric spectroscopy ; Electrochemical impedance spectroscopy ; electrochemistry ; Electrochemistry - methods ; Electrodeposition ; Electrodes ; enzyme kinetics ; Ferrocyanides - chemistry ; Fourier transform infrared spectroscopy ; Glucose ; Glucose - analysis ; glucose oxidase ; gold ; Gold - chemistry ; Hollow PtCo nanochains ; Microscopy, Electron, Scanning ; Multiwall carbon nanotubes ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotubes, Carbon - chemistry ; Platinum - chemistry ; Prussian blue ; Scanning electron microscopy ; Surface Properties</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2011-06, Vol.84 (2), p.454-461</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</citedby><cites>FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776511000610$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21334863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Che, Xin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><creatorcontrib>Chai, Yaqin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Song, Zhongju</creatorcontrib><creatorcontrib>Li, Wenjuan</creatorcontrib><creatorcontrib>Zhong, Xia</creatorcontrib><title>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>The schematic illustration of stepwise fabrication process of the glucose biosensors.
[Display omitted]
► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose.
In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5
μM to 1.12
mM with a detection limit of 0.47
μM (S/N
=
3), a high sensitivity of 23.4
μA
mM
−1
cm
−2, and a fast response time. The apparent Michaelis–Menten constant (
K
M
app
) was 1.89
mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.</description><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Cobalt - chemistry</subject><subject>colloids</subject><subject>detection limit</subject><subject>dielectric spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>electrochemistry</subject><subject>Electrochemistry - methods</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>enzyme kinetics</subject><subject>Ferrocyanides - chemistry</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Glucose</subject><subject>Glucose - analysis</subject><subject>glucose oxidase</subject><subject>gold</subject><subject>Gold - chemistry</subject><subject>Hollow PtCo nanochains</subject><subject>Microscopy, Electron, Scanning</subject><subject>Multiwall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Platinum - chemistry</subject><subject>Prussian blue</subject><subject>Scanning electron microscopy</subject><subject>Surface Properties</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEQgC0EoqHwCmVvcNngf29uVBF_UiUqQc-W7Z1tHDnr4Nml6o1HQOINeRIc0nKk0siW7W_Go_kIOWN0ySjTb7bLkBPOZfBLThlb0hqSPSIL1hnRSqHNY7KgK25aY7Q6Ic8Qt5RSLpl5Sk44E0J2WizIz_PmOs0hIzQ-1nXEXBrvEPomj03YxCmjG3__-HVZZsToxsanGep5N6cp3riUmuCKr-zoxjzNHrA-bnJK-aa5nNb5733YuDhiM-Syq4X9ba0NLU6wbyBBmEruYZ8xTjGPz8mTwSWEF3f7Kbl6_-7r-mN78fnDp_X5RRsU51MrpHJhFZyCQfsenA-s15R1yvhOeB1gEMFw2WtneuN7yRQV_WoloHO-c2wlTsmrY919yd9mwMnuIgZIyY2QZ7SdNkYIwdXDpOp4x6XilXz9X5IZQ4WqEmRF9RENJSMWGOy-xJ0rt5ZRezBst_besD0YtrSGZDXx7O6P2ddh_ku7V1qBl0dgcNm66xLRXn2pFXTVTw2jhzbfHgmo8_0eoVgMEcYAfSzVhu1zfKiLP43UytY</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Che, Xin</creator><creator>Yuan, Ruo</creator><creator>Chai, Yaqin</creator><creator>Li, Jingjing</creator><creator>Song, Zhongju</creator><creator>Li, Wenjuan</creator><creator>Zhong, Xia</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110601</creationdate><title>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</title><author>Che, Xin ; Yuan, Ruo ; Chai, Yaqin ; Li, Jingjing ; Song, Zhongju ; Li, Wenjuan ; Zhong, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-345ac9ca5ef6bdeabc1d601857b83b6cef3c724d6a7d7bd41503d993e8ab8a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Cobalt - chemistry</topic><topic>colloids</topic><topic>detection limit</topic><topic>dielectric spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>electrochemistry</topic><topic>Electrochemistry - methods</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>enzyme kinetics</topic><topic>Ferrocyanides - chemistry</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Glucose</topic><topic>Glucose - analysis</topic><topic>glucose oxidase</topic><topic>gold</topic><topic>Gold - chemistry</topic><topic>Hollow PtCo nanochains</topic><topic>Microscopy, Electron, Scanning</topic><topic>Multiwall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Platinum - chemistry</topic><topic>Prussian blue</topic><topic>Scanning electron microscopy</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Xin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><creatorcontrib>Chai, Yaqin</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Song, Zhongju</creatorcontrib><creatorcontrib>Li, Wenjuan</creatorcontrib><creatorcontrib>Zhong, Xia</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Xin</au><au>Yuan, Ruo</au><au>Chai, Yaqin</au><au>Li, Jingjing</au><au>Song, Zhongju</au><au>Li, Wenjuan</au><au>Zhong, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>84</volume><issue>2</issue><spage>454</spage><epage>461</epage><pages>454-461</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>The schematic illustration of stepwise fabrication process of the glucose biosensors.
[Display omitted]
► Use one-step electrodeposition to fabricate the CS–PB–MWNTs–H-PtCo composite. ► Research pH value, potential and deposition time on the biosensor performance. ► Compare the conductivity and performance of the different modified electrodes. ► Compare the performance of the biosensor use hollow and solid PtCo nanoparticles. ► Apply the prepared biosensor to detect glucose.
In this paper, a simple one-step electrodeposition method is described to fabricate chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains (CS–PB–MWNTs–H-PtCo) film onto the gold electrode surface, then glucose oxidase (GOD) and Nafion were modified onto the film subsequently to fabricate a glucose biosensor. The morphologies and electrochemistry of the composite were investigated by using Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and electrochemical techniques including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The performances of the biosensor have been investigated by chronoamperometry method under the optimized conditions. This biosensor showed a linear response to glucose range from 1.5
μM to 1.12
mM with a detection limit of 0.47
μM (S/N
=
3), a high sensitivity of 23.4
μA
mM
−1
cm
−2, and a fast response time. The apparent Michaelis–Menten constant (
K
M
app
) was 1.89
mM. In addition, the biosensor also exhibited strong anti-interference ability, excellent stability and good reproducibility.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21334863</pmid><doi>10.1016/j.colsurfb.2011.01.041</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2011-06, Vol.84 (2), p.454-461 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_867733325 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biosensing Techniques Biosensors Carbon Chitosan Chitosan - chemistry Cobalt - chemistry colloids detection limit dielectric spectroscopy Electrochemical impedance spectroscopy electrochemistry Electrochemistry - methods Electrodeposition Electrodes enzyme kinetics Ferrocyanides - chemistry Fourier transform infrared spectroscopy Glucose Glucose - analysis glucose oxidase gold Gold - chemistry Hollow PtCo nanochains Microscopy, Electron, Scanning Multiwall carbon nanotubes Nanocomposites Nanomaterials Nanostructure Nanotubes, Carbon - chemistry Platinum - chemistry Prussian blue Scanning electron microscopy Surface Properties |
title | A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20glucose%20biosensor%20based%20on%20chitosan%E2%80%93Prussian%20blue%E2%80%93multiwall%20carbon%20nanotubes%E2%80%93hollow%20PtCo%20nanochains%20formed%20by%20one-step%20electrodeposition&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Che,%20Xin&rft.date=2011-06-01&rft.volume=84&rft.issue=2&rft.spage=454&rft.epage=461&rft.pages=454-461&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2011.01.041&rft_dat=%3Cproquest_cross%3E867733325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770350244&rft_id=info:pmid/21334863&rft_els_id=S0927776511000610&rfr_iscdi=true |