Synthesis of β-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA

A synthetic methodology for the synthesis of various β‐pyrrolic‐functionalised porphyrins and their covalent attachment to 2′‐deoxyuridine and DNA is described. Palladium(0)‐catalysed Sonogashira and copper(I)‐catalysed Huisgen 1,3‐dipolar cycloaddition reactions were used to insert porphyrins into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2011-05, Vol.17 (22), p.6227-6238
Hauptverfasser: Stephenson, Adam W. I., Partridge, Ashton C., Filichev, Vyacheslav V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6238
container_issue 22
container_start_page 6227
container_title Chemistry : a European journal
container_volume 17
creator Stephenson, Adam W. I.
Partridge, Ashton C.
Filichev, Vyacheslav V.
description A synthetic methodology for the synthesis of various β‐pyrrolic‐functionalised porphyrins and their covalent attachment to 2′‐deoxyuridine and DNA is described. Palladium(0)‐catalysed Sonogashira and copper(I)‐catalysed Huisgen 1,3‐dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2′‐deoxyuridine and DNA. Insertion of a porphyrin into the middle of single‐stranded CT oligonucleotides possessing a 5′‐terminal run of four cytosines was shown to trigger the formation of pH‐ and temperature‐dependent i‐motif structures. Porphyrin insertion also led to the aggregation of single‐stranded purine–pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti‐parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin‐modified triplex‐forming oligonucleotide (TFO) strands was observed, whereas anti‐parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations. i‐Motif/triplex formation: Insertion of a β‐ pyrrolic‐functionalised porphyrin into the middle of single‐stranded CT oligonucleotides induces the formation of pH‐ and temperature‐dependent i‐motifs (see figure). Such aggregates can be dissociated by heat and due to their slow formation they do not interfere with duplex or triplex formation. Thermal stabilisation of parallel triplexes possessing a single porphyrin in TFO strands was observed, whereas anti‐parallel duplexes were significantly destabilised.
doi_str_mv 10.1002/chem.201003200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_867320818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>867320818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3820-aff6f2837e89ce8894fdeaadfe5b8ea02641a6a6c69a193c216aceda1c0d3fac3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EouWxZYmyY5XiR-PYS1QeLWp5I5aW64xVQxoXOxXkt_gQvomgQsWO1YxG516NDkIHBPcIxvTYzGDeo7jdGcV4A3VJRknKcp5toi6W_TzlGZMdtBPjM8ZYcsa2UYeSDDMpsi6a3DdVPYPoYuJt8vmR3jQh-NKZdOILZx0UyY0Pi1kTXBUTXRXJwwxcSEaVac8-6Nr5KnFV7ZPTq5M9tGV1GWH_Z-6ix_Ozh8EwHV9fjAYn49QwQXGqreWWCpaDkAaEkH1bgNaFhWwqQGPK-0RzzQ2XmkhmKOHaQKGJwQWz2rBddLTqXQT_uoRYq7mLBspSV-CXUQmetzoEES3ZW5Em-BgDWLUIbq5DowhW3wbVt0G1NtgGDn-ql9M5FGv8V1kLyBXw5kpo_qlTg-HZ5G95usq6WMP7OqvDi2o_zjP1dHWhBhm_HV_e3inCvgCbcI4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867320818</pqid></control><display><type>article</type><title>Synthesis of β-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Stephenson, Adam W. I. ; Partridge, Ashton C. ; Filichev, Vyacheslav V.</creator><creatorcontrib>Stephenson, Adam W. I. ; Partridge, Ashton C. ; Filichev, Vyacheslav V.</creatorcontrib><description>A synthetic methodology for the synthesis of various β‐pyrrolic‐functionalised porphyrins and their covalent attachment to 2′‐deoxyuridine and DNA is described. Palladium(0)‐catalysed Sonogashira and copper(I)‐catalysed Huisgen 1,3‐dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2′‐deoxyuridine and DNA. Insertion of a porphyrin into the middle of single‐stranded CT oligonucleotides possessing a 5′‐terminal run of four cytosines was shown to trigger the formation of pH‐ and temperature‐dependent i‐motif structures. Porphyrin insertion also led to the aggregation of single‐stranded purine–pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti‐parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin‐modified triplex‐forming oligonucleotide (TFO) strands was observed, whereas anti‐parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations. i‐Motif/triplex formation: Insertion of a β‐ pyrrolic‐functionalised porphyrin into the middle of single‐stranded CT oligonucleotides induces the formation of pH‐ and temperature‐dependent i‐motifs (see figure). Such aggregates can be dissociated by heat and due to their slow formation they do not interfere with duplex or triplex formation. Thermal stabilisation of parallel triplexes possessing a single porphyrin in TFO strands was observed, whereas anti‐parallel duplexes were significantly destabilised.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201003200</identifier><identifier>PMID: 21503985</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Base Sequence ; Catalysis ; Click Chemistry ; Cyclization ; cycloaddition ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA, Single-Stranded - chemistry ; Intercalating Agents ; Models, Molecular ; Nucleic Acid Conformation ; Oligonucleotides - chemistry ; Oligonucleotides - metabolism ; Palladium - chemistry ; porphyrinoids ; Porphyrins - chemical synthesis ; Porphyrins - chemistry ; Pyrimidines - chemistry ; Pyrimidines - metabolism ; Pyrroles - chemical synthesis ; Pyrroles - chemistry ; Temperature ; thermal stability</subject><ispartof>Chemistry : a European journal, 2011-05, Vol.17 (22), p.6227-6238</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3820-aff6f2837e89ce8894fdeaadfe5b8ea02641a6a6c69a193c216aceda1c0d3fac3</citedby><cites>FETCH-LOGICAL-c3820-aff6f2837e89ce8894fdeaadfe5b8ea02641a6a6c69a193c216aceda1c0d3fac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201003200$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201003200$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21503985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stephenson, Adam W. I.</creatorcontrib><creatorcontrib>Partridge, Ashton C.</creatorcontrib><creatorcontrib>Filichev, Vyacheslav V.</creatorcontrib><title>Synthesis of β-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>A synthetic methodology for the synthesis of various β‐pyrrolic‐functionalised porphyrins and their covalent attachment to 2′‐deoxyuridine and DNA is described. Palladium(0)‐catalysed Sonogashira and copper(I)‐catalysed Huisgen 1,3‐dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2′‐deoxyuridine and DNA. Insertion of a porphyrin into the middle of single‐stranded CT oligonucleotides possessing a 5′‐terminal run of four cytosines was shown to trigger the formation of pH‐ and temperature‐dependent i‐motif structures. Porphyrin insertion also led to the aggregation of single‐stranded purine–pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti‐parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin‐modified triplex‐forming oligonucleotide (TFO) strands was observed, whereas anti‐parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations. i‐Motif/triplex formation: Insertion of a β‐ pyrrolic‐functionalised porphyrin into the middle of single‐stranded CT oligonucleotides induces the formation of pH‐ and temperature‐dependent i‐motifs (see figure). Such aggregates can be dissociated by heat and due to their slow formation they do not interfere with duplex or triplex formation. Thermal stabilisation of parallel triplexes possessing a single porphyrin in TFO strands was observed, whereas anti‐parallel duplexes were significantly destabilised.</description><subject>Base Sequence</subject><subject>Catalysis</subject><subject>Click Chemistry</subject><subject>Cyclization</subject><subject>cycloaddition</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Intercalating Agents</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Oligonucleotides - chemistry</subject><subject>Oligonucleotides - metabolism</subject><subject>Palladium - chemistry</subject><subject>porphyrinoids</subject><subject>Porphyrins - chemical synthesis</subject><subject>Porphyrins - chemistry</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - metabolism</subject><subject>Pyrroles - chemical synthesis</subject><subject>Pyrroles - chemistry</subject><subject>Temperature</subject><subject>thermal stability</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EouWxZYmyY5XiR-PYS1QeLWp5I5aW64xVQxoXOxXkt_gQvomgQsWO1YxG516NDkIHBPcIxvTYzGDeo7jdGcV4A3VJRknKcp5toi6W_TzlGZMdtBPjM8ZYcsa2UYeSDDMpsi6a3DdVPYPoYuJt8vmR3jQh-NKZdOILZx0UyY0Pi1kTXBUTXRXJwwxcSEaVac8-6Nr5KnFV7ZPTq5M9tGV1GWH_Z-6ix_Ozh8EwHV9fjAYn49QwQXGqreWWCpaDkAaEkH1bgNaFhWwqQGPK-0RzzQ2XmkhmKOHaQKGJwQWz2rBddLTqXQT_uoRYq7mLBspSV-CXUQmetzoEES3ZW5Em-BgDWLUIbq5DowhW3wbVt0G1NtgGDn-ql9M5FGv8V1kLyBXw5kpo_qlTg-HZ5G95usq6WMP7OqvDi2o_zjP1dHWhBhm_HV_e3inCvgCbcI4C</recordid><startdate>20110523</startdate><enddate>20110523</enddate><creator>Stephenson, Adam W. I.</creator><creator>Partridge, Ashton C.</creator><creator>Filichev, Vyacheslav V.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110523</creationdate><title>Synthesis of β-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA</title><author>Stephenson, Adam W. I. ; Partridge, Ashton C. ; Filichev, Vyacheslav V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3820-aff6f2837e89ce8894fdeaadfe5b8ea02641a6a6c69a193c216aceda1c0d3fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Base Sequence</topic><topic>Catalysis</topic><topic>Click Chemistry</topic><topic>Cyclization</topic><topic>cycloaddition</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Intercalating Agents</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Oligonucleotides - chemistry</topic><topic>Oligonucleotides - metabolism</topic><topic>Palladium - chemistry</topic><topic>porphyrinoids</topic><topic>Porphyrins - chemical synthesis</topic><topic>Porphyrins - chemistry</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - metabolism</topic><topic>Pyrroles - chemical synthesis</topic><topic>Pyrroles - chemistry</topic><topic>Temperature</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephenson, Adam W. I.</creatorcontrib><creatorcontrib>Partridge, Ashton C.</creatorcontrib><creatorcontrib>Filichev, Vyacheslav V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephenson, Adam W. I.</au><au>Partridge, Ashton C.</au><au>Filichev, Vyacheslav V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of β-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2011-05-23</date><risdate>2011</risdate><volume>17</volume><issue>22</issue><spage>6227</spage><epage>6238</epage><pages>6227-6238</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>A synthetic methodology for the synthesis of various β‐pyrrolic‐functionalised porphyrins and their covalent attachment to 2′‐deoxyuridine and DNA is described. Palladium(0)‐catalysed Sonogashira and copper(I)‐catalysed Huisgen 1,3‐dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2′‐deoxyuridine and DNA. Insertion of a porphyrin into the middle of single‐stranded CT oligonucleotides possessing a 5′‐terminal run of four cytosines was shown to trigger the formation of pH‐ and temperature‐dependent i‐motif structures. Porphyrin insertion also led to the aggregation of single‐stranded purine–pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti‐parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin‐modified triplex‐forming oligonucleotide (TFO) strands was observed, whereas anti‐parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations. i‐Motif/triplex formation: Insertion of a β‐ pyrrolic‐functionalised porphyrin into the middle of single‐stranded CT oligonucleotides induces the formation of pH‐ and temperature‐dependent i‐motifs (see figure). Such aggregates can be dissociated by heat and due to their slow formation they do not interfere with duplex or triplex formation. Thermal stabilisation of parallel triplexes possessing a single porphyrin in TFO strands was observed, whereas anti‐parallel duplexes were significantly destabilised.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21503985</pmid><doi>10.1002/chem.201003200</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2011-05, Vol.17 (22), p.6227-6238
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_867320818
source MEDLINE; Access via Wiley Online Library
subjects Base Sequence
Catalysis
Click Chemistry
Cyclization
cycloaddition
DNA
DNA - chemistry
DNA - metabolism
DNA, Single-Stranded - chemistry
Intercalating Agents
Models, Molecular
Nucleic Acid Conformation
Oligonucleotides - chemistry
Oligonucleotides - metabolism
Palladium - chemistry
porphyrinoids
Porphyrins - chemical synthesis
Porphyrins - chemistry
Pyrimidines - chemistry
Pyrimidines - metabolism
Pyrroles - chemical synthesis
Pyrroles - chemistry
Temperature
thermal stability
title Synthesis of β-Pyrrolic-Modified Porphyrins and Their Incorporation into DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20%CE%B2-Pyrrolic-Modified%20Porphyrins%20and%20Their%20Incorporation%20into%20DNA&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Stephenson,%20Adam%20W.%20I.&rft.date=2011-05-23&rft.volume=17&rft.issue=22&rft.spage=6227&rft.epage=6238&rft.pages=6227-6238&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201003200&rft_dat=%3Cproquest_cross%3E867320818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867320818&rft_id=info:pmid/21503985&rfr_iscdi=true