Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics

Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-05, Vol.11 (5), p.1887-1894
Hauptverfasser: Ungureanu, Constantin, Kroes, Rene, Petersen, Wilma, Groothuis, Tom A. M, Ungureanu, Felicia, Janssen, Hans, van Leeuwen, Fijs W. B, Kooyman, Rob P. H, Manohar, Srirang, van Leeuwen, Ton G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1894
container_issue 5
container_start_page 1887
container_title Nano letters
container_volume 11
creator Ungureanu, Constantin
Kroes, Rene
Petersen, Wilma
Groothuis, Tom A. M
Ungureanu, Felicia
Janssen, Hans
van Leeuwen, Fijs W. B
Kooyman, Rob P. H
Manohar, Srirang
van Leeuwen, Ton G
description Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and as photothermal therapeutic agents. The favorable optical properties of AuNR which depend on the physical parameters of shape, size and plasmonic coupling effects, are required to be stable during use. We investigate the changes that are likely to occur in these physical parameters in the setting of photothermal therapeutics, and the influence that these changes have on the optical properties and the capacity to achieve target cell death. To this end we study 3 sets of interactions: pulsed light with AuNR, AuNR with cells, and pulsed light with cells incubated with AuNR. In the first situation we ascertain the threshold value of fluence required for photothermal melting or reshaping of AuNR to shorter AuNR or nanospheres, which results in drastic changes in optical properties. In the second situation when cells are exposed to antibody-conjugated AuNR, we observe using transmission electron microscopy (TEM) that the particles are closely packed and clustered inside vesicles in the cells. Using dark-field microscopy we show that plasmonic interactions between AuNRs in this situation causes blue-shifting of the LP absorption peak. As a consequence, no direct lethal damage to cells can be inflicted by laser irradiation at the LP peak. On the other hand, using irradiation at the transverse peak (TP) wavelength in the green, at comparative fluences, extensive cell death can be achieved. We attribute this behavior on the one hand to the photoreshaping of AuNR into spheres and on the other hand to clustering of AuNR inside cells. Both effects create sufficiently high optical absorption at 532 nm, which otherwise would have been present at the LP peak. We discuss implications of these finding on the application of these particles in biomedicine.
doi_str_mv 10.1021/nl103884b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_866251829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>866251829</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-306d200f336cf1d4f122cab659456e08b4f9a4f7034e34360ad6ff70e556704a3</originalsourceid><addsrcrecordid>eNpt0E1LwzAYB_AgipvTg19AehHxUM1bs9SbDJ2DoR70XJ6mie1om5qkiN_ezs3t4ilP4Pe88EfonOAbgim5bWuCmZQ8P0BjkjAcizSlh7ta8hE68X6FMU5Zgo_RiBKeEinkGGXL6qMM0aIN2oEKlW199FWFMprbuoieobXOFj6Ctohmuq79XbRourpSsKHGuui1tMGGUrsG6t-OdQ2d7kOl_Ck6MlB7fbZ9J-j98eFt9hQvX-aL2f0yBsZ5iBkWBcXYMCaUIQU3hFIFuUhSngiNZc5NCtxMMeOacSYwFMIMX50kYoo5sAm62sztnP3stQ9ZU3k1XAyttr3PpBA0IZKmg7zeSOWs906brHNVA-47Izhbx5nt4hzsxXZqnze62Mm__AZwuQXgFdTGQasqv3ecCCpZunegfLayvWuHMP5Z-AM8Kojc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866251829</pqid></control><display><type>article</type><title>Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ungureanu, Constantin ; Kroes, Rene ; Petersen, Wilma ; Groothuis, Tom A. M ; Ungureanu, Felicia ; Janssen, Hans ; van Leeuwen, Fijs W. B ; Kooyman, Rob P. H ; Manohar, Srirang ; van Leeuwen, Ton G</creator><creatorcontrib>Ungureanu, Constantin ; Kroes, Rene ; Petersen, Wilma ; Groothuis, Tom A. M ; Ungureanu, Felicia ; Janssen, Hans ; van Leeuwen, Fijs W. B ; Kooyman, Rob P. H ; Manohar, Srirang ; van Leeuwen, Ton G</creatorcontrib><description>Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and as photothermal therapeutic agents. The favorable optical properties of AuNR which depend on the physical parameters of shape, size and plasmonic coupling effects, are required to be stable during use. We investigate the changes that are likely to occur in these physical parameters in the setting of photothermal therapeutics, and the influence that these changes have on the optical properties and the capacity to achieve target cell death. To this end we study 3 sets of interactions: pulsed light with AuNR, AuNR with cells, and pulsed light with cells incubated with AuNR. In the first situation we ascertain the threshold value of fluence required for photothermal melting or reshaping of AuNR to shorter AuNR or nanospheres, which results in drastic changes in optical properties. In the second situation when cells are exposed to antibody-conjugated AuNR, we observe using transmission electron microscopy (TEM) that the particles are closely packed and clustered inside vesicles in the cells. Using dark-field microscopy we show that plasmonic interactions between AuNRs in this situation causes blue-shifting of the LP absorption peak. As a consequence, no direct lethal damage to cells can be inflicted by laser irradiation at the LP peak. On the other hand, using irradiation at the transverse peak (TP) wavelength in the green, at comparative fluences, extensive cell death can be achieved. We attribute this behavior on the one hand to the photoreshaping of AuNR into spheres and on the other hand to clustering of AuNR inside cells. Both effects create sufficiently high optical absorption at 532 nm, which otherwise would have been present at the LP peak. We discuss implications of these finding on the application of these particles in biomedicine.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl103884b</identifier><identifier>PMID: 21491868</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption ; Acoustics ; Cell Line, Tumor ; Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Gold - chemistry ; Humans ; Lasers ; Light ; Materials science ; Metal Nanoparticles - chemistry ; Microscopy, Electron, Transmission - methods ; Nanocrystalline materials ; Nanomedicine - methods ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Nanotubes ; Nanotubes - chemistry ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Photochemistry - methods ; Physics ; Surface and interface electron states</subject><ispartof>Nano letters, 2011-05, Vol.11 (5), p.1887-1894</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-306d200f336cf1d4f122cab659456e08b4f9a4f7034e34360ad6ff70e556704a3</citedby><cites>FETCH-LOGICAL-a344t-306d200f336cf1d4f122cab659456e08b4f9a4f7034e34360ad6ff70e556704a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl103884b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl103884b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24162839$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21491868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ungureanu, Constantin</creatorcontrib><creatorcontrib>Kroes, Rene</creatorcontrib><creatorcontrib>Petersen, Wilma</creatorcontrib><creatorcontrib>Groothuis, Tom A. M</creatorcontrib><creatorcontrib>Ungureanu, Felicia</creatorcontrib><creatorcontrib>Janssen, Hans</creatorcontrib><creatorcontrib>van Leeuwen, Fijs W. B</creatorcontrib><creatorcontrib>Kooyman, Rob P. H</creatorcontrib><creatorcontrib>Manohar, Srirang</creatorcontrib><creatorcontrib>van Leeuwen, Ton G</creatorcontrib><title>Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and as photothermal therapeutic agents. The favorable optical properties of AuNR which depend on the physical parameters of shape, size and plasmonic coupling effects, are required to be stable during use. We investigate the changes that are likely to occur in these physical parameters in the setting of photothermal therapeutics, and the influence that these changes have on the optical properties and the capacity to achieve target cell death. To this end we study 3 sets of interactions: pulsed light with AuNR, AuNR with cells, and pulsed light with cells incubated with AuNR. In the first situation we ascertain the threshold value of fluence required for photothermal melting or reshaping of AuNR to shorter AuNR or nanospheres, which results in drastic changes in optical properties. In the second situation when cells are exposed to antibody-conjugated AuNR, we observe using transmission electron microscopy (TEM) that the particles are closely packed and clustered inside vesicles in the cells. Using dark-field microscopy we show that plasmonic interactions between AuNRs in this situation causes blue-shifting of the LP absorption peak. As a consequence, no direct lethal damage to cells can be inflicted by laser irradiation at the LP peak. On the other hand, using irradiation at the transverse peak (TP) wavelength in the green, at comparative fluences, extensive cell death can be achieved. We attribute this behavior on the one hand to the photoreshaping of AuNR into spheres and on the other hand to clustering of AuNR inside cells. Both effects create sufficiently high optical absorption at 532 nm, which otherwise would have been present at the LP peak. We discuss implications of these finding on the application of these particles in biomedicine.</description><subject>Absorption</subject><subject>Acoustics</subject><subject>Cell Line, Tumor</subject><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Gold - chemistry</subject><subject>Humans</subject><subject>Lasers</subject><subject>Light</subject><subject>Materials science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nanocrystalline materials</subject><subject>Nanomedicine - methods</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Photochemistry - methods</subject><subject>Physics</subject><subject>Surface and interface electron states</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LwzAYB_AgipvTg19AehHxUM1bs9SbDJ2DoR70XJ6mie1om5qkiN_ezs3t4ilP4Pe88EfonOAbgim5bWuCmZQ8P0BjkjAcizSlh7ta8hE68X6FMU5Zgo_RiBKeEinkGGXL6qMM0aIN2oEKlW199FWFMprbuoieobXOFj6Ctohmuq79XbRourpSsKHGuui1tMGGUrsG6t-OdQ2d7kOl_Ck6MlB7fbZ9J-j98eFt9hQvX-aL2f0yBsZ5iBkWBcXYMCaUIQU3hFIFuUhSngiNZc5NCtxMMeOacSYwFMIMX50kYoo5sAm62sztnP3stQ9ZU3k1XAyttr3PpBA0IZKmg7zeSOWs906brHNVA-47Izhbx5nt4hzsxXZqnze62Mm__AZwuQXgFdTGQasqv3ecCCpZunegfLayvWuHMP5Z-AM8Kojc</recordid><startdate>20110511</startdate><enddate>20110511</enddate><creator>Ungureanu, Constantin</creator><creator>Kroes, Rene</creator><creator>Petersen, Wilma</creator><creator>Groothuis, Tom A. M</creator><creator>Ungureanu, Felicia</creator><creator>Janssen, Hans</creator><creator>van Leeuwen, Fijs W. B</creator><creator>Kooyman, Rob P. H</creator><creator>Manohar, Srirang</creator><creator>van Leeuwen, Ton G</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110511</creationdate><title>Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics</title><author>Ungureanu, Constantin ; Kroes, Rene ; Petersen, Wilma ; Groothuis, Tom A. M ; Ungureanu, Felicia ; Janssen, Hans ; van Leeuwen, Fijs W. B ; Kooyman, Rob P. H ; Manohar, Srirang ; van Leeuwen, Ton G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-306d200f336cf1d4f122cab659456e08b4f9a4f7034e34360ad6ff70e556704a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorption</topic><topic>Acoustics</topic><topic>Cell Line, Tumor</topic><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Gold - chemistry</topic><topic>Humans</topic><topic>Lasers</topic><topic>Light</topic><topic>Materials science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nanocrystalline materials</topic><topic>Nanomedicine - methods</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Photochemistry - methods</topic><topic>Physics</topic><topic>Surface and interface electron states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ungureanu, Constantin</creatorcontrib><creatorcontrib>Kroes, Rene</creatorcontrib><creatorcontrib>Petersen, Wilma</creatorcontrib><creatorcontrib>Groothuis, Tom A. M</creatorcontrib><creatorcontrib>Ungureanu, Felicia</creatorcontrib><creatorcontrib>Janssen, Hans</creatorcontrib><creatorcontrib>van Leeuwen, Fijs W. B</creatorcontrib><creatorcontrib>Kooyman, Rob P. H</creatorcontrib><creatorcontrib>Manohar, Srirang</creatorcontrib><creatorcontrib>van Leeuwen, Ton G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ungureanu, Constantin</au><au>Kroes, Rene</au><au>Petersen, Wilma</au><au>Groothuis, Tom A. M</au><au>Ungureanu, Felicia</au><au>Janssen, Hans</au><au>van Leeuwen, Fijs W. B</au><au>Kooyman, Rob P. H</au><au>Manohar, Srirang</au><au>van Leeuwen, Ton G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-05-11</date><risdate>2011</risdate><volume>11</volume><issue>5</issue><spage>1887</spage><epage>1894</epage><pages>1887-1894</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and as photothermal therapeutic agents. The favorable optical properties of AuNR which depend on the physical parameters of shape, size and plasmonic coupling effects, are required to be stable during use. We investigate the changes that are likely to occur in these physical parameters in the setting of photothermal therapeutics, and the influence that these changes have on the optical properties and the capacity to achieve target cell death. To this end we study 3 sets of interactions: pulsed light with AuNR, AuNR with cells, and pulsed light with cells incubated with AuNR. In the first situation we ascertain the threshold value of fluence required for photothermal melting or reshaping of AuNR to shorter AuNR or nanospheres, which results in drastic changes in optical properties. In the second situation when cells are exposed to antibody-conjugated AuNR, we observe using transmission electron microscopy (TEM) that the particles are closely packed and clustered inside vesicles in the cells. Using dark-field microscopy we show that plasmonic interactions between AuNRs in this situation causes blue-shifting of the LP absorption peak. As a consequence, no direct lethal damage to cells can be inflicted by laser irradiation at the LP peak. On the other hand, using irradiation at the transverse peak (TP) wavelength in the green, at comparative fluences, extensive cell death can be achieved. We attribute this behavior on the one hand to the photoreshaping of AuNR into spheres and on the other hand to clustering of AuNR inside cells. Both effects create sufficiently high optical absorption at 532 nm, which otherwise would have been present at the LP peak. We discuss implications of these finding on the application of these particles in biomedicine.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21491868</pmid><doi>10.1021/nl103884b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-05, Vol.11 (5), p.1887-1894
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_866251829
source MEDLINE; ACS Publications
subjects Absorption
Acoustics
Cell Line, Tumor
Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Gold - chemistry
Humans
Lasers
Light
Materials science
Metal Nanoparticles - chemistry
Microscopy, Electron, Transmission - methods
Nanocrystalline materials
Nanomedicine - methods
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - methods
Nanotubes
Nanotubes - chemistry
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Photochemistry - methods
Physics
Surface and interface electron states
title Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20Interactions%20with%20Gold%20Nanorods%20and%20Cells:%20Implications%20for%20Photothermal%20Nanotherapeutics&rft.jtitle=Nano%20letters&rft.au=Ungureanu,%20Constantin&rft.date=2011-05-11&rft.volume=11&rft.issue=5&rft.spage=1887&rft.epage=1894&rft.pages=1887-1894&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl103884b&rft_dat=%3Cproquest_cross%3E866251829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866251829&rft_id=info:pmid/21491868&rfr_iscdi=true