Effect of solidification temperature range on the dendritic growth mode

Electromagnetic levitation technique was used to undercool bulk samples of Co-20% Cu and Co-60% Cu alloys and high undercoolings up to 303 and 110 K were achieved,respectively.The dendritic growth velocities were measured as a function of undercooling.The dendrite growth velocity of the Co-20% Cu al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2011, Vol.54 (1), p.89-94
Hauptverfasser: Cao, ChongDe, Wang, Fang, Duan, LiBing, Bai, XiaoJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 89
container_title Science China. Physics, mechanics & astronomy
container_volume 54
creator Cao, ChongDe
Wang, Fang
Duan, LiBing
Bai, XiaoJun
description Electromagnetic levitation technique was used to undercool bulk samples of Co-20% Cu and Co-60% Cu alloys and high undercoolings up to 303 and 110 K were achieved,respectively.The dendritic growth velocities were measured as a function of undercooling.The dendrite growth velocity of the Co-20% Cu alloy was much higher than that of the Co-60% Cu alloy.The experimental data were analyzed on the basis of the LKT/BCT dendritic growth model by taking into account non-equilibrium interface kinetics.It has been revealed that a transition from solute diffusion controlled dendritic growth to thermal diffusion controlled dendritic growth occurs at an undercooling of about 66 K for the Co-20% Cu alloy,whereas the dendrite growth in Co-60% Cu alloy proceeds in a solute diffusion controlled mode within a large solidification temperature range,and the solutal undercooling plays a dominant role.It is thus deduced that certain distinct solidification temperature ranges may be responsible for the different solidification modes for the two alloys.
doi_str_mv 10.1007/s11433-010-4167-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864964125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36779007</cqvip_id><sourcerecordid>864964125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-938e8b4b85c2889fca7f955ca48580914e03e3665bc0dc071f99718affb73bb63</originalsourceid><addsrcrecordid>eNp9kE1LwzAYgIsoOOZ-gLeiB0_VpEnzcZQxpzDwoueQpm-2zLbZkhbZvzdjA8GDuSSE53kTniy7xegRI8SfIsaUkAJhVFDMeHG4yCZYMFlgWfLLdGacFpxQcZ3NYtyitIhElNNJtlxYC2bIvc2jb13jrDN6cL7PB-h2EPQwBsiD7teQHy83kDfQN8ENzuTr4L-HTd75Bm6yK6vbCLPzPs0-XxYf89di9b58mz-vCkN4NRSSCBA1rUVlSiGkNZpbWVVGU1EJJDEFRIAwVtUGNQZxbKXkWGhra07qmpFp9nCauwt-P0IcVOeigbbVPfgxKsGoZBSXVSLv_5BbP4Y-fU6VMtXBKKGJwifKBB9jAKt2wXU6HBRG6hhXneKqFFcd46pDcsqTExObwoTfyf9Jd-eHNr5f75Onam2-rGtBEca5TBr5AV0_h2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918610649</pqid></control><display><type>article</type><title>Effect of solidification temperature range on the dendritic growth mode</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Cao, ChongDe ; Wang, Fang ; Duan, LiBing ; Bai, XiaoJun</creator><creatorcontrib>Cao, ChongDe ; Wang, Fang ; Duan, LiBing ; Bai, XiaoJun</creatorcontrib><description>Electromagnetic levitation technique was used to undercool bulk samples of Co-20% Cu and Co-60% Cu alloys and high undercoolings up to 303 and 110 K were achieved,respectively.The dendritic growth velocities were measured as a function of undercooling.The dendrite growth velocity of the Co-20% Cu alloy was much higher than that of the Co-60% Cu alloy.The experimental data were analyzed on the basis of the LKT/BCT dendritic growth model by taking into account non-equilibrium interface kinetics.It has been revealed that a transition from solute diffusion controlled dendritic growth to thermal diffusion controlled dendritic growth occurs at an undercooling of about 66 K for the Co-20% Cu alloy,whereas the dendrite growth in Co-60% Cu alloy proceeds in a solute diffusion controlled mode within a large solidification temperature range,and the solutal undercooling plays a dominant role.It is thus deduced that certain distinct solidification temperature ranges may be responsible for the different solidification modes for the two alloys.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-010-4167-y</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Alloys ; Astronomy ; Classical and Continuum Physics ; Cobalt ; Copper base alloys ; Dendrites ; Dendritic structure ; Growth models ; Magnetic levitation ; Observations and Techniques ; Physics ; Physics and Astronomy ; Research Paper ; Solidification ; Supercooling ; Thermal diffusion ; 凝固方式 ; 扩散控制 ; 枝晶生长 ; 温度范围 ; 溶质扩散 ; 生长速度 ; 电磁悬浮技术</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2011, Vol.54 (1), p.89-94</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-938e8b4b85c2889fca7f955ca48580914e03e3665bc0dc071f99718affb73bb63</citedby><cites>FETCH-LOGICAL-c375t-938e8b4b85c2889fca7f955ca48580914e03e3665bc0dc071f99718affb73bb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-010-4167-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-010-4167-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,4025,27928,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Cao, ChongDe</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Duan, LiBing</creatorcontrib><creatorcontrib>Bai, XiaoJun</creatorcontrib><title>Effect of solidification temperature range on the dendritic growth mode</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>Electromagnetic levitation technique was used to undercool bulk samples of Co-20% Cu and Co-60% Cu alloys and high undercoolings up to 303 and 110 K were achieved,respectively.The dendritic growth velocities were measured as a function of undercooling.The dendrite growth velocity of the Co-20% Cu alloy was much higher than that of the Co-60% Cu alloy.The experimental data were analyzed on the basis of the LKT/BCT dendritic growth model by taking into account non-equilibrium interface kinetics.It has been revealed that a transition from solute diffusion controlled dendritic growth to thermal diffusion controlled dendritic growth occurs at an undercooling of about 66 K for the Co-20% Cu alloy,whereas the dendrite growth in Co-60% Cu alloy proceeds in a solute diffusion controlled mode within a large solidification temperature range,and the solutal undercooling plays a dominant role.It is thus deduced that certain distinct solidification temperature ranges may be responsible for the different solidification modes for the two alloys.</description><subject>Alloys</subject><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Cobalt</subject><subject>Copper base alloys</subject><subject>Dendrites</subject><subject>Dendritic structure</subject><subject>Growth models</subject><subject>Magnetic levitation</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Paper</subject><subject>Solidification</subject><subject>Supercooling</subject><subject>Thermal diffusion</subject><subject>凝固方式</subject><subject>扩散控制</subject><subject>枝晶生长</subject><subject>温度范围</subject><subject>溶质扩散</subject><subject>生长速度</subject><subject>电磁悬浮技术</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LwzAYgIsoOOZ-gLeiB0_VpEnzcZQxpzDwoueQpm-2zLbZkhbZvzdjA8GDuSSE53kTniy7xegRI8SfIsaUkAJhVFDMeHG4yCZYMFlgWfLLdGacFpxQcZ3NYtyitIhElNNJtlxYC2bIvc2jb13jrDN6cL7PB-h2EPQwBsiD7teQHy83kDfQN8ENzuTr4L-HTd75Bm6yK6vbCLPzPs0-XxYf89di9b58mz-vCkN4NRSSCBA1rUVlSiGkNZpbWVVGU1EJJDEFRIAwVtUGNQZxbKXkWGhra07qmpFp9nCauwt-P0IcVOeigbbVPfgxKsGoZBSXVSLv_5BbP4Y-fU6VMtXBKKGJwifKBB9jAKt2wXU6HBRG6hhXneKqFFcd46pDcsqTExObwoTfyf9Jd-eHNr5f75Onam2-rGtBEca5TBr5AV0_h2g</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Cao, ChongDe</creator><creator>Wang, Fang</creator><creator>Duan, LiBing</creator><creator>Bai, XiaoJun</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>2011</creationdate><title>Effect of solidification temperature range on the dendritic growth mode</title><author>Cao, ChongDe ; Wang, Fang ; Duan, LiBing ; Bai, XiaoJun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-938e8b4b85c2889fca7f955ca48580914e03e3665bc0dc071f99718affb73bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Cobalt</topic><topic>Copper base alloys</topic><topic>Dendrites</topic><topic>Dendritic structure</topic><topic>Growth models</topic><topic>Magnetic levitation</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Paper</topic><topic>Solidification</topic><topic>Supercooling</topic><topic>Thermal diffusion</topic><topic>凝固方式</topic><topic>扩散控制</topic><topic>枝晶生长</topic><topic>温度范围</topic><topic>溶质扩散</topic><topic>生长速度</topic><topic>电磁悬浮技术</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, ChongDe</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Duan, LiBing</creatorcontrib><creatorcontrib>Bai, XiaoJun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, ChongDe</au><au>Wang, Fang</au><au>Duan, LiBing</au><au>Bai, XiaoJun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of solidification temperature range on the dendritic growth mode</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2011</date><risdate>2011</risdate><volume>54</volume><issue>1</issue><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>Electromagnetic levitation technique was used to undercool bulk samples of Co-20% Cu and Co-60% Cu alloys and high undercoolings up to 303 and 110 K were achieved,respectively.The dendritic growth velocities were measured as a function of undercooling.The dendrite growth velocity of the Co-20% Cu alloy was much higher than that of the Co-60% Cu alloy.The experimental data were analyzed on the basis of the LKT/BCT dendritic growth model by taking into account non-equilibrium interface kinetics.It has been revealed that a transition from solute diffusion controlled dendritic growth to thermal diffusion controlled dendritic growth occurs at an undercooling of about 66 K for the Co-20% Cu alloy,whereas the dendrite growth in Co-60% Cu alloy proceeds in a solute diffusion controlled mode within a large solidification temperature range,and the solutal undercooling plays a dominant role.It is thus deduced that certain distinct solidification temperature ranges may be responsible for the different solidification modes for the two alloys.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-010-4167-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2011, Vol.54 (1), p.89-94
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_miscellaneous_864964125
source SpringerNature Journals; Alma/SFX Local Collection
subjects Alloys
Astronomy
Classical and Continuum Physics
Cobalt
Copper base alloys
Dendrites
Dendritic structure
Growth models
Magnetic levitation
Observations and Techniques
Physics
Physics and Astronomy
Research Paper
Solidification
Supercooling
Thermal diffusion
凝固方式
扩散控制
枝晶生长
温度范围
溶质扩散
生长速度
电磁悬浮技术
title Effect of solidification temperature range on the dendritic growth mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20solidification%20temperature%20range%20on%20the%20dendritic%20growth%20mode&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Cao,%20ChongDe&rft.date=2011&rft.volume=54&rft.issue=1&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-010-4167-y&rft_dat=%3Cproquest_cross%3E864964125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918610649&rft_id=info:pmid/&rft_cqvip_id=36779007&rfr_iscdi=true