Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression

There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2011-05, Vol.56 (2), p.809-813
Hauptverfasser: Nouretdinov, Ilia, Costafreda, Sergi G., Gammerman, Alexander, Chervonenkis, Alexey, Vovk, Vladimir, Vapnik, Vladimir, Fu, Cynthia H.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 2
container_start_page 809
container_title NeuroImage (Orlando, Fla.)
container_volume 56
creator Nouretdinov, Ilia
Costafreda, Sergi G.
Gammerman, Alexander
Chervonenkis, Alexey
Vovk, Vladimir
Vapnik, Vladimir
Fu, Cynthia H.Y.
description There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction.
doi_str_mv 10.1016/j.neuroimage.2010.05.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864961376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191000755X</els_id><sourcerecordid>3642016001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d11e54cdc187e472c0337a3c1c9a50e1472d91d0f500844c908a7fda240b11b33</originalsourceid><addsrcrecordid>eNqNkc2OFCEQgInRuOvqKxgSD556rGroP2_rxp9NdmNi9EwYqJ5l7IYR6N34Mj6rjLOjiRc9AcVXVBUfYxxhhYDtq-3K0xKDm_WGVjWUMDQrqMUDdoowNNXQdPXD_b4RVY84nLAnKW0BYEDZP2YnNcheiG44ZT-utblxnvhEOnrnN9xMOiU3OqOzC57fuXzDTfCjs-QNvebnu910vAwjz1H7ZBeT3S394kKc9cR3kawzOcTEc-DXny6rtU5kuXV640PKznDtbcHC8Tjr-JUK7jy3VNJLE8E_ZY9GPSV6dr-esS_v3n6--FBdfXx_eXF-VRkpRK4sIjXSWIN9R7KrDZTptDBoBt0AYQnZAS2MDUAvpRmg191odS1hjbgW4oy9PLxbGvq2UMpqdsnQNGlPYUmqb-XQouja_yCFFLVssJAv_iK3YYm-jKGwbXuQxVJXqP5AmRhSijSqXSxe43eFoPay1Vb9ka32shU0qsguqc_vCyzrmezvxKPdArw5AFS-7tZRVMm4vUXrIpmsbHD_rvITdKjDGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668049577</pqid></control><display><type>article</type><title>Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Nouretdinov, Ilia ; Costafreda, Sergi G. ; Gammerman, Alexander ; Chervonenkis, Alexey ; Vovk, Vladimir ; Vapnik, Vladimir ; Fu, Cynthia H.Y.</creator><creatorcontrib>Nouretdinov, Ilia ; Costafreda, Sergi G. ; Gammerman, Alexander ; Chervonenkis, Alexey ; Vovk, Vladimir ; Vapnik, Vladimir ; Fu, Cynthia H.Y.</creatorcontrib><description>There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2010.05.023</identifier><identifier>PMID: 20483379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Alzheimer's disease ; Artificial Intelligence ; Behavior modification ; Brain Mapping - methods ; Classification ; Confidence ; Datasets ; Depression - diagnosis ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Resonance Imaging ; NMR ; Nuclear magnetic resonance ; Patients ; Prognosis ; Statistical methods ; Studies</subject><ispartof>NeuroImage (Orlando, Fla.), 2011-05, Vol.56 (2), p.809-813</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d11e54cdc187e472c0337a3c1c9a50e1472d91d0f500844c908a7fda240b11b33</citedby><cites>FETCH-LOGICAL-c433t-d11e54cdc187e472c0337a3c1c9a50e1472d91d0f500844c908a7fda240b11b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1668049577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20483379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nouretdinov, Ilia</creatorcontrib><creatorcontrib>Costafreda, Sergi G.</creatorcontrib><creatorcontrib>Gammerman, Alexander</creatorcontrib><creatorcontrib>Chervonenkis, Alexey</creatorcontrib><creatorcontrib>Vovk, Vladimir</creatorcontrib><creatorcontrib>Vapnik, Vladimir</creatorcontrib><creatorcontrib>Fu, Cynthia H.Y.</creatorcontrib><title>Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Artificial Intelligence</subject><subject>Behavior modification</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Confidence</subject><subject>Datasets</subject><subject>Depression - diagnosis</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2OFCEQgInRuOvqKxgSD556rGroP2_rxp9NdmNi9EwYqJ5l7IYR6N34Mj6rjLOjiRc9AcVXVBUfYxxhhYDtq-3K0xKDm_WGVjWUMDQrqMUDdoowNNXQdPXD_b4RVY84nLAnKW0BYEDZP2YnNcheiG44ZT-utblxnvhEOnrnN9xMOiU3OqOzC57fuXzDTfCjs-QNvebnu910vAwjz1H7ZBeT3S394kKc9cR3kawzOcTEc-DXny6rtU5kuXV640PKznDtbcHC8Tjr-JUK7jy3VNJLE8E_ZY9GPSV6dr-esS_v3n6--FBdfXx_eXF-VRkpRK4sIjXSWIN9R7KrDZTptDBoBt0AYQnZAS2MDUAvpRmg191odS1hjbgW4oy9PLxbGvq2UMpqdsnQNGlPYUmqb-XQouja_yCFFLVssJAv_iK3YYm-jKGwbXuQxVJXqP5AmRhSijSqXSxe43eFoPay1Vb9ka32shU0qsguqc_vCyzrmezvxKPdArw5AFS-7tZRVMm4vUXrIpmsbHD_rvITdKjDGg</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Nouretdinov, Ilia</creator><creator>Costafreda, Sergi G.</creator><creator>Gammerman, Alexander</creator><creator>Chervonenkis, Alexey</creator><creator>Vovk, Vladimir</creator><creator>Vapnik, Vladimir</creator><creator>Fu, Cynthia H.Y.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110515</creationdate><title>Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression</title><author>Nouretdinov, Ilia ; Costafreda, Sergi G. ; Gammerman, Alexander ; Chervonenkis, Alexey ; Vovk, Vladimir ; Vapnik, Vladimir ; Fu, Cynthia H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d11e54cdc187e472c0337a3c1c9a50e1472d91d0f500844c908a7fda240b11b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Artificial Intelligence</topic><topic>Behavior modification</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Confidence</topic><topic>Datasets</topic><topic>Depression - diagnosis</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nouretdinov, Ilia</creatorcontrib><creatorcontrib>Costafreda, Sergi G.</creatorcontrib><creatorcontrib>Gammerman, Alexander</creatorcontrib><creatorcontrib>Chervonenkis, Alexey</creatorcontrib><creatorcontrib>Vovk, Vladimir</creatorcontrib><creatorcontrib>Vapnik, Vladimir</creatorcontrib><creatorcontrib>Fu, Cynthia H.Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nouretdinov, Ilia</au><au>Costafreda, Sergi G.</au><au>Gammerman, Alexander</au><au>Chervonenkis, Alexey</au><au>Vovk, Vladimir</au><au>Vapnik, Vladimir</au><au>Fu, Cynthia H.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>56</volume><issue>2</issue><spage>809</spage><epage>813</epage><pages>809-813</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20483379</pmid><doi>10.1016/j.neuroimage.2010.05.023</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2011-05, Vol.56 (2), p.809-813
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_864961376
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Accuracy
Algorithms
Alzheimer's disease
Artificial Intelligence
Behavior modification
Brain Mapping - methods
Classification
Confidence
Datasets
Depression - diagnosis
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
NMR
Nuclear magnetic resonance
Patients
Prognosis
Statistical methods
Studies
title Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20classification%20with%20confidence:%20Application%20of%20transductive%20conformal%20predictors%20to%20MRI-based%20diagnostic%20and%20prognostic%20markers%20in%20depression&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Nouretdinov,%20Ilia&rft.date=2011-05-15&rft.volume=56&rft.issue=2&rft.spage=809&rft.epage=813&rft.pages=809-813&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2010.05.023&rft_dat=%3Cproquest_cross%3E3642016001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668049577&rft_id=info:pmid/20483379&rft_els_id=S105381191000755X&rfr_iscdi=true