Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery
Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-i...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2011-05, Vol.102 (10), p.6153-6158 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6158 |
---|---|
container_issue | 10 |
container_start_page | 6153 |
container_title | Bioresource technology |
container_volume | 102 |
creator | Sun, Shanshan Zhang, Zhongzhi Luo, Yijing Zhong, Weizhang Xiao, Meng Yi, Wenjing Yu, Li Fu, Pengcheng |
description | Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an
Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37
°C and a thermophilic
Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83
g
l
−1 in molasses medium at 54
°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. |
doi_str_mv | 10.1016/j.biortech.2011.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864959250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411003476</els_id><sourcerecordid>864959250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</originalsourceid><addsrcrecordid>eNqNkcFu1DAURS0EokPhFypvEN0k2I5jJztQNQWkSmxgbTn2c8ejTDzYmar5-77RTGEHrN7C59rP9xByxVnNGVcft_UQU57BbWrBOK9ZUzPWviAr3ummEr1WL8mK9YpVXSvkBXlTypYx1nAtXpMLwaWUmFuRx_Vj2qdxKda5jc3RA93n5A9ujmmiw0ItvYcJ5ujsOC4Upvs4AWTwdD3NkNNgHQ7qxmSdBVrmbONEQ8p0Fx0eRztiaGMnh5EUR5rBpQfIy1vyKtixwLvzvCQ_b9c_br5Wd9-_fLv5fFc5qcRcdVZ6G3QnlOWh6wKTzDthuxBa5xUoHVqJZN95JXRQqhd-0DBAzzVIyX1zST6c7sVv_TpAmc0uFgfjaCdIh2I6Jfu2Fy37D7KRDe-FRPL6ryTXWnOBS3NE1QnFMkrJEMw-x53Ni-HMHE2arXk2aY4mDWsMmsTg1fmNw7AD_zv2rA6B92fAFpQTMnYcyx9O8kZr1SP36cQBtvwQIZviIhx9RHQxG5_iv3Z5AsaUweQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777127821</pqid></control><display><type>article</type><title>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Shanshan ; Zhang, Zhongzhi ; Luo, Yijing ; Zhong, Weizhang ; Xiao, Meng ; Yi, Wenjing ; Yu, Li ; Fu, Pengcheng</creator><creatorcontrib>Sun, Shanshan ; Zhang, Zhongzhi ; Luo, Yijing ; Zhong, Weizhang ; Xiao, Meng ; Yi, Wenjing ; Yu, Li ; Fu, Pengcheng</creatorcontrib><description>Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an
Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37
°C and a thermophilic
Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83
g
l
−1 in molasses medium at 54
°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.03.005</identifier><identifier>PMID: 21444201</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Base Sequence ; Biological and medical sciences ; Biotechnology ; Core flooding ; Crude oil ; DNA Primers ; Electrotransformation ; Enhanced oil recovery ; Enterobacter cloacae ; Enterobacter cloacae - genetics ; Enterobacter cloacae - metabolism ; Exploitation ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Genomic DNA ; Geobacillus ; Hot Temperature ; Methods. Procedures. Technologies ; Microbial enhanced oil recovery (MEOR) ; Microorganisms ; Oil recovery ; Organisms, Genetically Modified ; Polymerase Chain Reaction ; Polysaccharides - biosynthesis ; Reservoirs ; Strain ; Water-insoluble exopolysaccharide</subject><ispartof>Bioresource technology, 2011-05, Vol.102 (10), p.6153-6158</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</citedby><cites>FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852411003476$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24137769$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21444201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Shanshan</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><creatorcontrib>Luo, Yijing</creatorcontrib><creatorcontrib>Zhong, Weizhang</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Yi, Wenjing</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><title>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an
Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37
°C and a thermophilic
Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83
g
l
−1 in molasses medium at 54
°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Core flooding</subject><subject>Crude oil</subject><subject>DNA Primers</subject><subject>Electrotransformation</subject><subject>Enhanced oil recovery</subject><subject>Enterobacter cloacae</subject><subject>Enterobacter cloacae - genetics</subject><subject>Enterobacter cloacae - metabolism</subject><subject>Exploitation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Genomic DNA</subject><subject>Geobacillus</subject><subject>Hot Temperature</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial enhanced oil recovery (MEOR)</subject><subject>Microorganisms</subject><subject>Oil recovery</subject><subject>Organisms, Genetically Modified</subject><subject>Polymerase Chain Reaction</subject><subject>Polysaccharides - biosynthesis</subject><subject>Reservoirs</subject><subject>Strain</subject><subject>Water-insoluble exopolysaccharide</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAURS0EokPhFypvEN0k2I5jJztQNQWkSmxgbTn2c8ejTDzYmar5-77RTGEHrN7C59rP9xByxVnNGVcft_UQU57BbWrBOK9ZUzPWviAr3ummEr1WL8mK9YpVXSvkBXlTypYx1nAtXpMLwaWUmFuRx_Vj2qdxKda5jc3RA93n5A9ujmmiw0ItvYcJ5ujsOC4Upvs4AWTwdD3NkNNgHQ7qxmSdBVrmbONEQ8p0Fx0eRztiaGMnh5EUR5rBpQfIy1vyKtixwLvzvCQ_b9c_br5Wd9-_fLv5fFc5qcRcdVZ6G3QnlOWh6wKTzDthuxBa5xUoHVqJZN95JXRQqhd-0DBAzzVIyX1zST6c7sVv_TpAmc0uFgfjaCdIh2I6Jfu2Fy37D7KRDe-FRPL6ryTXWnOBS3NE1QnFMkrJEMw-x53Ni-HMHE2arXk2aY4mDWsMmsTg1fmNw7AD_zv2rA6B92fAFpQTMnYcyx9O8kZr1SP36cQBtvwQIZviIhx9RHQxG5_iv3Z5AsaUweQ</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Sun, Shanshan</creator><creator>Zhang, Zhongzhi</creator><creator>Luo, Yijing</creator><creator>Zhong, Weizhang</creator><creator>Xiao, Meng</creator><creator>Yi, Wenjing</creator><creator>Yu, Li</creator><creator>Fu, Pengcheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20110501</creationdate><title>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</title><author>Sun, Shanshan ; Zhang, Zhongzhi ; Luo, Yijing ; Zhong, Weizhang ; Xiao, Meng ; Yi, Wenjing ; Yu, Li ; Fu, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Core flooding</topic><topic>Crude oil</topic><topic>DNA Primers</topic><topic>Electrotransformation</topic><topic>Enhanced oil recovery</topic><topic>Enterobacter cloacae</topic><topic>Enterobacter cloacae - genetics</topic><topic>Enterobacter cloacae - metabolism</topic><topic>Exploitation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Genomic DNA</topic><topic>Geobacillus</topic><topic>Hot Temperature</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial enhanced oil recovery (MEOR)</topic><topic>Microorganisms</topic><topic>Oil recovery</topic><topic>Organisms, Genetically Modified</topic><topic>Polymerase Chain Reaction</topic><topic>Polysaccharides - biosynthesis</topic><topic>Reservoirs</topic><topic>Strain</topic><topic>Water-insoluble exopolysaccharide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shanshan</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><creatorcontrib>Luo, Yijing</creatorcontrib><creatorcontrib>Zhong, Weizhang</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Yi, Wenjing</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shanshan</au><au>Zhang, Zhongzhi</au><au>Luo, Yijing</au><au>Zhong, Weizhang</au><au>Xiao, Meng</au><au>Yi, Wenjing</au><au>Yu, Li</au><au>Fu, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>102</volume><issue>10</issue><spage>6153</spage><epage>6158</epage><pages>6153-6158</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an
Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37
°C and a thermophilic
Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83
g
l
−1 in molasses medium at 54
°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21444201</pmid><doi>10.1016/j.biortech.2011.03.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2011-05, Vol.102 (10), p.6153-6158 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_864959250 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Base Sequence Biological and medical sciences Biotechnology Core flooding Crude oil DNA Primers Electrotransformation Enhanced oil recovery Enterobacter cloacae Enterobacter cloacae - genetics Enterobacter cloacae - metabolism Exploitation Fundamental and applied biological sciences. Psychology Genetic engineering Genetic technics Genomic DNA Geobacillus Hot Temperature Methods. Procedures. Technologies Microbial enhanced oil recovery (MEOR) Microorganisms Oil recovery Organisms, Genetically Modified Polymerase Chain Reaction Polysaccharides - biosynthesis Reservoirs Strain Water-insoluble exopolysaccharide |
title | Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exopolysaccharide%20production%20by%20a%20genetically%20engineered%20Enterobacter%20cloacae%20strain%20for%20microbial%20enhanced%20oil%20recovery&rft.jtitle=Bioresource%20technology&rft.au=Sun,%20Shanshan&rft.date=2011-05-01&rft.volume=102&rft.issue=10&rft.spage=6153&rft.epage=6158&rft.pages=6153-6158&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.03.005&rft_dat=%3Cproquest_cross%3E864959250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777127821&rft_id=info:pmid/21444201&rft_els_id=S0960852411003476&rfr_iscdi=true |