Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery

Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-05, Vol.102 (10), p.6153-6158
Hauptverfasser: Sun, Shanshan, Zhang, Zhongzhi, Luo, Yijing, Zhong, Weizhang, Xiao, Meng, Yi, Wenjing, Yu, Li, Fu, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6158
container_issue 10
container_start_page 6153
container_title Bioresource technology
container_volume 102
creator Sun, Shanshan
Zhang, Zhongzhi
Luo, Yijing
Zhong, Weizhang
Xiao, Meng
Yi, Wenjing
Yu, Li
Fu, Pengcheng
description Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37 °C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l −1 in molasses medium at 54 °C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.
doi_str_mv 10.1016/j.biortech.2011.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864959250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852411003476</els_id><sourcerecordid>864959250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</originalsourceid><addsrcrecordid>eNqNkcFu1DAURS0EokPhFypvEN0k2I5jJztQNQWkSmxgbTn2c8ejTDzYmar5-77RTGEHrN7C59rP9xByxVnNGVcft_UQU57BbWrBOK9ZUzPWviAr3ummEr1WL8mK9YpVXSvkBXlTypYx1nAtXpMLwaWUmFuRx_Vj2qdxKda5jc3RA93n5A9ujmmiw0ItvYcJ5ujsOC4Upvs4AWTwdD3NkNNgHQ7qxmSdBVrmbONEQ8p0Fx0eRztiaGMnh5EUR5rBpQfIy1vyKtixwLvzvCQ_b9c_br5Wd9-_fLv5fFc5qcRcdVZ6G3QnlOWh6wKTzDthuxBa5xUoHVqJZN95JXRQqhd-0DBAzzVIyX1zST6c7sVv_TpAmc0uFgfjaCdIh2I6Jfu2Fy37D7KRDe-FRPL6ryTXWnOBS3NE1QnFMkrJEMw-x53Ni-HMHE2arXk2aY4mDWsMmsTg1fmNw7AD_zv2rA6B92fAFpQTMnYcyx9O8kZr1SP36cQBtvwQIZviIhx9RHQxG5_iv3Z5AsaUweQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777127821</pqid></control><display><type>article</type><title>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Shanshan ; Zhang, Zhongzhi ; Luo, Yijing ; Zhong, Weizhang ; Xiao, Meng ; Yi, Wenjing ; Yu, Li ; Fu, Pengcheng</creator><creatorcontrib>Sun, Shanshan ; Zhang, Zhongzhi ; Luo, Yijing ; Zhong, Weizhang ; Xiao, Meng ; Yi, Wenjing ; Yu, Li ; Fu, Pengcheng</creatorcontrib><description>Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37 °C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l −1 in molasses medium at 54 °C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.03.005</identifier><identifier>PMID: 21444201</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Base Sequence ; Biological and medical sciences ; Biotechnology ; Core flooding ; Crude oil ; DNA Primers ; Electrotransformation ; Enhanced oil recovery ; Enterobacter cloacae ; Enterobacter cloacae - genetics ; Enterobacter cloacae - metabolism ; Exploitation ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Genomic DNA ; Geobacillus ; Hot Temperature ; Methods. Procedures. Technologies ; Microbial enhanced oil recovery (MEOR) ; Microorganisms ; Oil recovery ; Organisms, Genetically Modified ; Polymerase Chain Reaction ; Polysaccharides - biosynthesis ; Reservoirs ; Strain ; Water-insoluble exopolysaccharide</subject><ispartof>Bioresource technology, 2011-05, Vol.102 (10), p.6153-6158</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</citedby><cites>FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852411003476$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24137769$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21444201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Shanshan</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><creatorcontrib>Luo, Yijing</creatorcontrib><creatorcontrib>Zhong, Weizhang</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Yi, Wenjing</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><title>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37 °C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l −1 in molasses medium at 54 °C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Core flooding</subject><subject>Crude oil</subject><subject>DNA Primers</subject><subject>Electrotransformation</subject><subject>Enhanced oil recovery</subject><subject>Enterobacter cloacae</subject><subject>Enterobacter cloacae - genetics</subject><subject>Enterobacter cloacae - metabolism</subject><subject>Exploitation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Genomic DNA</subject><subject>Geobacillus</subject><subject>Hot Temperature</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial enhanced oil recovery (MEOR)</subject><subject>Microorganisms</subject><subject>Oil recovery</subject><subject>Organisms, Genetically Modified</subject><subject>Polymerase Chain Reaction</subject><subject>Polysaccharides - biosynthesis</subject><subject>Reservoirs</subject><subject>Strain</subject><subject>Water-insoluble exopolysaccharide</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAURS0EokPhFypvEN0k2I5jJztQNQWkSmxgbTn2c8ejTDzYmar5-77RTGEHrN7C59rP9xByxVnNGVcft_UQU57BbWrBOK9ZUzPWviAr3ummEr1WL8mK9YpVXSvkBXlTypYx1nAtXpMLwaWUmFuRx_Vj2qdxKda5jc3RA93n5A9ujmmiw0ItvYcJ5ujsOC4Upvs4AWTwdD3NkNNgHQ7qxmSdBVrmbONEQ8p0Fx0eRztiaGMnh5EUR5rBpQfIy1vyKtixwLvzvCQ_b9c_br5Wd9-_fLv5fFc5qcRcdVZ6G3QnlOWh6wKTzDthuxBa5xUoHVqJZN95JXRQqhd-0DBAzzVIyX1zST6c7sVv_TpAmc0uFgfjaCdIh2I6Jfu2Fy37D7KRDe-FRPL6ryTXWnOBS3NE1QnFMkrJEMw-x53Ni-HMHE2arXk2aY4mDWsMmsTg1fmNw7AD_zv2rA6B92fAFpQTMnYcyx9O8kZr1SP36cQBtvwQIZviIhx9RHQxG5_iv3Z5AsaUweQ</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Sun, Shanshan</creator><creator>Zhang, Zhongzhi</creator><creator>Luo, Yijing</creator><creator>Zhong, Weizhang</creator><creator>Xiao, Meng</creator><creator>Yi, Wenjing</creator><creator>Yu, Li</creator><creator>Fu, Pengcheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20110501</creationdate><title>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</title><author>Sun, Shanshan ; Zhang, Zhongzhi ; Luo, Yijing ; Zhong, Weizhang ; Xiao, Meng ; Yi, Wenjing ; Yu, Li ; Fu, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8a4daf7826a1f88f040dc2a8ff5cd6e67f54c4698d627f6692db7ebe917e441d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Core flooding</topic><topic>Crude oil</topic><topic>DNA Primers</topic><topic>Electrotransformation</topic><topic>Enhanced oil recovery</topic><topic>Enterobacter cloacae</topic><topic>Enterobacter cloacae - genetics</topic><topic>Enterobacter cloacae - metabolism</topic><topic>Exploitation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Genomic DNA</topic><topic>Geobacillus</topic><topic>Hot Temperature</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial enhanced oil recovery (MEOR)</topic><topic>Microorganisms</topic><topic>Oil recovery</topic><topic>Organisms, Genetically Modified</topic><topic>Polymerase Chain Reaction</topic><topic>Polysaccharides - biosynthesis</topic><topic>Reservoirs</topic><topic>Strain</topic><topic>Water-insoluble exopolysaccharide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shanshan</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><creatorcontrib>Luo, Yijing</creatorcontrib><creatorcontrib>Zhong, Weizhang</creatorcontrib><creatorcontrib>Xiao, Meng</creatorcontrib><creatorcontrib>Yi, Wenjing</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Fu, Pengcheng</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shanshan</au><au>Zhang, Zhongzhi</au><au>Luo, Yijing</au><au>Zhong, Weizhang</au><au>Xiao, Meng</au><au>Yi, Wenjing</au><au>Yu, Li</au><au>Fu, Pengcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>102</volume><issue>10</issue><spage>6153</spage><epage>6158</epage><pages>6153-6158</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37 °C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l −1 in molasses medium at 54 °C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21444201</pmid><doi>10.1016/j.biortech.2011.03.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-05, Vol.102 (10), p.6153-6158
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_864959250
source MEDLINE; Elsevier ScienceDirect Journals
subjects Base Sequence
Biological and medical sciences
Biotechnology
Core flooding
Crude oil
DNA Primers
Electrotransformation
Enhanced oil recovery
Enterobacter cloacae
Enterobacter cloacae - genetics
Enterobacter cloacae - metabolism
Exploitation
Fundamental and applied biological sciences. Psychology
Genetic engineering
Genetic technics
Genomic DNA
Geobacillus
Hot Temperature
Methods. Procedures. Technologies
Microbial enhanced oil recovery (MEOR)
Microorganisms
Oil recovery
Organisms, Genetically Modified
Polymerase Chain Reaction
Polysaccharides - biosynthesis
Reservoirs
Strain
Water-insoluble exopolysaccharide
title Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exopolysaccharide%20production%20by%20a%20genetically%20engineered%20Enterobacter%20cloacae%20strain%20for%20microbial%20enhanced%20oil%20recovery&rft.jtitle=Bioresource%20technology&rft.au=Sun,%20Shanshan&rft.date=2011-05-01&rft.volume=102&rft.issue=10&rft.spage=6153&rft.epage=6158&rft.pages=6153-6158&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.03.005&rft_dat=%3Cproquest_cross%3E864959250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777127821&rft_id=info:pmid/21444201&rft_els_id=S0960852411003476&rfr_iscdi=true