Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics

Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-05, Vol.102 (10), p.6246-6253
Hauptverfasser: Gómez-Martínez, D., Barneto, A.G., Martínez, I., Partal, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6253
container_issue 10
container_start_page 6246
container_title Bioresource technology
container_volume 102
creator Gómez-Martínez, D.
Barneto, A.G.
Martínez, I.
Partal, P.
description Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.
doi_str_mv 10.1016/j.biortech.2011.02.074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864957696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241100280X</els_id><sourcerecordid>863431918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</originalsourceid><addsrcrecordid>eNqN0c-O0zAQBvAIgdiy8ApLLgguCR7Hztg3Viv-SUUcYM-W40yKqzQudoLUG-_AG_IkuGoXbsDJB__G81lfUVwBq4FB-3Jbdz7EmdyXmjOAmvGaobhXrEBhU3GN7f1ixXTLKiW5uCgepbRljDWA_GFxwaHRCoCvivWH0NM4-mlThqHcH2IYD8mn0k596cKuW9Lsw3S824zLTNPP7z8248FRdlVnE_VlzrEfbWYuPS4eDHZM9OR8Xha3b15_vnlXrT--fX9zva6cUO1cOSTUKLjQiATKOYlDI0Ey0hxbSdqSFr3uUDlE2Sm0QIw3UgpqBHDXXBbPT-_uY_i6UJrNzieXv2EnCksyqhVaYqvb_5CNaECDyvLFXyUgInAOgJm2J-piSCnSYPbR72w8GGDm2I7Zmrt2zLEdw7jJ7eTBq_OOpdtR_3vsro4Mnp2BTc6OQ7ST8-mPE9AgKsju6ckNNhi7idncfsqbBGOgpNTHjK9OgnIP3zxFk5ynyVHvI7nZ9MH_K-0v00q54Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777122117</pqid></control><display><type>article</type><title>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Martínez, D. ; Barneto, A.G. ; Martínez, I. ; Partal, P.</creator><creatorcontrib>Gómez-Martínez, D. ; Barneto, A.G. ; Martínez, I. ; Partal, P.</creatorcontrib><description>Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.02.074</identifier><identifier>PMID: 21398112</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>air ; Biological and medical sciences ; Bioplastic ; combustion ; Computer simulation ; Fundamental and applied biological sciences. Psychology ; Gliadin ; Gluten ; Glutens - chemistry ; glycerol ; Glycerol - chemistry ; Microstructure ; Modelling ; Models, Theoretical ; Moisture content ; nitrogen ; Plastics ; protein content ; Proteins ; Pyrolysis ; starch ; Starches ; Thermal degradation ; Thermogravimetry ; Triticum aestivum ; volatilization ; water content ; wheat gluten</subject><ispartof>Bioresource technology, 2011-05, Vol.102 (10), p.6246-6253</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</citedby><cites>FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096085241100280X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24137781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21398112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Martínez, D.</creatorcontrib><creatorcontrib>Barneto, A.G.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Partal, P.</creatorcontrib><title>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.</description><subject>air</subject><subject>Biological and medical sciences</subject><subject>Bioplastic</subject><subject>combustion</subject><subject>Computer simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gliadin</subject><subject>Gluten</subject><subject>Glutens - chemistry</subject><subject>glycerol</subject><subject>Glycerol - chemistry</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>Moisture content</subject><subject>nitrogen</subject><subject>Plastics</subject><subject>protein content</subject><subject>Proteins</subject><subject>Pyrolysis</subject><subject>starch</subject><subject>Starches</subject><subject>Thermal degradation</subject><subject>Thermogravimetry</subject><subject>Triticum aestivum</subject><subject>volatilization</subject><subject>water content</subject><subject>wheat gluten</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c-O0zAQBvAIgdiy8ApLLgguCR7Hztg3Viv-SUUcYM-W40yKqzQudoLUG-_AG_IkuGoXbsDJB__G81lfUVwBq4FB-3Jbdz7EmdyXmjOAmvGaobhXrEBhU3GN7f1ixXTLKiW5uCgepbRljDWA_GFxwaHRCoCvivWH0NM4-mlThqHcH2IYD8mn0k596cKuW9Lsw3S824zLTNPP7z8248FRdlVnE_VlzrEfbWYuPS4eDHZM9OR8Xha3b15_vnlXrT--fX9zva6cUO1cOSTUKLjQiATKOYlDI0Ey0hxbSdqSFr3uUDlE2Sm0QIw3UgpqBHDXXBbPT-_uY_i6UJrNzieXv2EnCksyqhVaYqvb_5CNaECDyvLFXyUgInAOgJm2J-piSCnSYPbR72w8GGDm2I7Zmrt2zLEdw7jJ7eTBq_OOpdtR_3vsro4Mnp2BTc6OQ7ST8-mPE9AgKsju6ckNNhi7idncfsqbBGOgpNTHjK9OgnIP3zxFk5ynyVHvI7nZ9MH_K-0v00q54Q</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Gómez-Martínez, D.</creator><creator>Barneto, A.G.</creator><creator>Martínez, I.</creator><creator>Partal, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110501</creationdate><title>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</title><author>Gómez-Martínez, D. ; Barneto, A.G. ; Martínez, I. ; Partal, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>air</topic><topic>Biological and medical sciences</topic><topic>Bioplastic</topic><topic>combustion</topic><topic>Computer simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gliadin</topic><topic>Gluten</topic><topic>Glutens - chemistry</topic><topic>glycerol</topic><topic>Glycerol - chemistry</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>Moisture content</topic><topic>nitrogen</topic><topic>Plastics</topic><topic>protein content</topic><topic>Proteins</topic><topic>Pyrolysis</topic><topic>starch</topic><topic>Starches</topic><topic>Thermal degradation</topic><topic>Thermogravimetry</topic><topic>Triticum aestivum</topic><topic>volatilization</topic><topic>water content</topic><topic>wheat gluten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Martínez, D.</creatorcontrib><creatorcontrib>Barneto, A.G.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Partal, P.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Martínez, D.</au><au>Barneto, A.G.</au><au>Martínez, I.</au><au>Partal, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>102</volume><issue>10</issue><spage>6246</spage><epage>6253</epage><pages>6246-6253</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21398112</pmid><doi>10.1016/j.biortech.2011.02.074</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-05, Vol.102 (10), p.6246-6253
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_864957696
source MEDLINE; Elsevier ScienceDirect Journals
subjects air
Biological and medical sciences
Bioplastic
combustion
Computer simulation
Fundamental and applied biological sciences. Psychology
Gliadin
Gluten
Glutens - chemistry
glycerol
Glycerol - chemistry
Microstructure
Modelling
Models, Theoretical
Moisture content
nitrogen
Plastics
protein content
Proteins
Pyrolysis
starch
Starches
Thermal degradation
Thermogravimetry
Triticum aestivum
volatilization
water content
wheat gluten
title Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20pyrolysis%20and%20combustion%20of%20gluten%E2%80%93glycerol-based%20bioplastics&rft.jtitle=Bioresource%20technology&rft.au=G%C3%B3mez-Mart%C3%ADnez,%20D.&rft.date=2011-05-01&rft.volume=102&rft.issue=10&rft.spage=6246&rft.epage=6253&rft.pages=6246-6253&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.02.074&rft_dat=%3Cproquest_cross%3E863431918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777122117&rft_id=info:pmid/21398112&rft_els_id=S096085241100280X&rfr_iscdi=true