Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics
Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components,...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2011-05, Vol.102 (10), p.6246-6253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6253 |
---|---|
container_issue | 10 |
container_start_page | 6246 |
container_title | Bioresource technology |
container_volume | 102 |
creator | Gómez-Martínez, D. Barneto, A.G. Martínez, I. Partal, P. |
description | Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions. |
doi_str_mv | 10.1016/j.biortech.2011.02.074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864957696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241100280X</els_id><sourcerecordid>863431918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</originalsourceid><addsrcrecordid>eNqN0c-O0zAQBvAIgdiy8ApLLgguCR7Hztg3Viv-SUUcYM-W40yKqzQudoLUG-_AG_IkuGoXbsDJB__G81lfUVwBq4FB-3Jbdz7EmdyXmjOAmvGaobhXrEBhU3GN7f1ixXTLKiW5uCgepbRljDWA_GFxwaHRCoCvivWH0NM4-mlThqHcH2IYD8mn0k596cKuW9Lsw3S824zLTNPP7z8248FRdlVnE_VlzrEfbWYuPS4eDHZM9OR8Xha3b15_vnlXrT--fX9zva6cUO1cOSTUKLjQiATKOYlDI0Ey0hxbSdqSFr3uUDlE2Sm0QIw3UgpqBHDXXBbPT-_uY_i6UJrNzieXv2EnCksyqhVaYqvb_5CNaECDyvLFXyUgInAOgJm2J-piSCnSYPbR72w8GGDm2I7Zmrt2zLEdw7jJ7eTBq_OOpdtR_3vsro4Mnp2BTc6OQ7ST8-mPE9AgKsju6ckNNhi7idncfsqbBGOgpNTHjK9OgnIP3zxFk5ynyVHvI7nZ9MH_K-0v00q54Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777122117</pqid></control><display><type>article</type><title>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Martínez, D. ; Barneto, A.G. ; Martínez, I. ; Partal, P.</creator><creatorcontrib>Gómez-Martínez, D. ; Barneto, A.G. ; Martínez, I. ; Partal, P.</creatorcontrib><description>Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2011.02.074</identifier><identifier>PMID: 21398112</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>air ; Biological and medical sciences ; Bioplastic ; combustion ; Computer simulation ; Fundamental and applied biological sciences. Psychology ; Gliadin ; Gluten ; Glutens - chemistry ; glycerol ; Glycerol - chemistry ; Microstructure ; Modelling ; Models, Theoretical ; Moisture content ; nitrogen ; Plastics ; protein content ; Proteins ; Pyrolysis ; starch ; Starches ; Thermal degradation ; Thermogravimetry ; Triticum aestivum ; volatilization ; water content ; wheat gluten</subject><ispartof>Bioresource technology, 2011-05, Vol.102 (10), p.6246-6253</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</citedby><cites>FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096085241100280X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24137781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21398112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Martínez, D.</creatorcontrib><creatorcontrib>Barneto, A.G.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Partal, P.</creatorcontrib><title>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.</description><subject>air</subject><subject>Biological and medical sciences</subject><subject>Bioplastic</subject><subject>combustion</subject><subject>Computer simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gliadin</subject><subject>Gluten</subject><subject>Glutens - chemistry</subject><subject>glycerol</subject><subject>Glycerol - chemistry</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>Moisture content</subject><subject>nitrogen</subject><subject>Plastics</subject><subject>protein content</subject><subject>Proteins</subject><subject>Pyrolysis</subject><subject>starch</subject><subject>Starches</subject><subject>Thermal degradation</subject><subject>Thermogravimetry</subject><subject>Triticum aestivum</subject><subject>volatilization</subject><subject>water content</subject><subject>wheat gluten</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c-O0zAQBvAIgdiy8ApLLgguCR7Hztg3Viv-SUUcYM-W40yKqzQudoLUG-_AG_IkuGoXbsDJB__G81lfUVwBq4FB-3Jbdz7EmdyXmjOAmvGaobhXrEBhU3GN7f1ixXTLKiW5uCgepbRljDWA_GFxwaHRCoCvivWH0NM4-mlThqHcH2IYD8mn0k596cKuW9Lsw3S824zLTNPP7z8248FRdlVnE_VlzrEfbWYuPS4eDHZM9OR8Xha3b15_vnlXrT--fX9zva6cUO1cOSTUKLjQiATKOYlDI0Ey0hxbSdqSFr3uUDlE2Sm0QIw3UgpqBHDXXBbPT-_uY_i6UJrNzieXv2EnCksyqhVaYqvb_5CNaECDyvLFXyUgInAOgJm2J-piSCnSYPbR72w8GGDm2I7Zmrt2zLEdw7jJ7eTBq_OOpdtR_3vsro4Mnp2BTc6OQ7ST8-mPE9AgKsju6ckNNhi7idncfsqbBGOgpNTHjK9OgnIP3zxFk5ynyVHvI7nZ9MH_K-0v00q54Q</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Gómez-Martínez, D.</creator><creator>Barneto, A.G.</creator><creator>Martínez, I.</creator><creator>Partal, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110501</creationdate><title>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</title><author>Gómez-Martínez, D. ; Barneto, A.G. ; Martínez, I. ; Partal, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c7e797424977e18cc57f35150e92765e9ae94d9b78c775b87a1e023554e3412c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>air</topic><topic>Biological and medical sciences</topic><topic>Bioplastic</topic><topic>combustion</topic><topic>Computer simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gliadin</topic><topic>Gluten</topic><topic>Glutens - chemistry</topic><topic>glycerol</topic><topic>Glycerol - chemistry</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>Moisture content</topic><topic>nitrogen</topic><topic>Plastics</topic><topic>protein content</topic><topic>Proteins</topic><topic>Pyrolysis</topic><topic>starch</topic><topic>Starches</topic><topic>Thermal degradation</topic><topic>Thermogravimetry</topic><topic>Triticum aestivum</topic><topic>volatilization</topic><topic>water content</topic><topic>wheat gluten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Martínez, D.</creatorcontrib><creatorcontrib>Barneto, A.G.</creatorcontrib><creatorcontrib>Martínez, I.</creatorcontrib><creatorcontrib>Partal, P.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Martínez, D.</au><au>Barneto, A.G.</au><au>Martínez, I.</au><au>Partal, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>102</volume><issue>10</issue><spage>6246</spage><epage>6253</epage><pages>6246-6253</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten–glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21398112</pmid><doi>10.1016/j.biortech.2011.02.074</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2011-05, Vol.102 (10), p.6246-6253 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_864957696 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | air Biological and medical sciences Bioplastic combustion Computer simulation Fundamental and applied biological sciences. Psychology Gliadin Gluten Glutens - chemistry glycerol Glycerol - chemistry Microstructure Modelling Models, Theoretical Moisture content nitrogen Plastics protein content Proteins Pyrolysis starch Starches Thermal degradation Thermogravimetry Triticum aestivum volatilization water content wheat gluten |
title | Modelling of pyrolysis and combustion of gluten–glycerol-based bioplastics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20pyrolysis%20and%20combustion%20of%20gluten%E2%80%93glycerol-based%20bioplastics&rft.jtitle=Bioresource%20technology&rft.au=G%C3%B3mez-Mart%C3%ADnez,%20D.&rft.date=2011-05-01&rft.volume=102&rft.issue=10&rft.spage=6246&rft.epage=6253&rft.pages=6246-6253&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2011.02.074&rft_dat=%3Cproquest_cross%3E863431918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777122117&rft_id=info:pmid/21398112&rft_els_id=S096085241100280X&rfr_iscdi=true |