Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis
Sphingosine kinase 1 (SK1) catalyses the formation of bioactive phospholipid sphingosine 1-phosphate (S1P). Elevated cellular SK1 activity and S1P levels enhance cell proliferation and survival, and are strongly implicated in tumourigenesis. Regulation of SK1 activity can occur through various mecha...
Gespeichert in:
Veröffentlicht in: | Oncogene 2011-01, Vol.30 (3), p.372-378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 3 |
container_start_page | 372 |
container_title | Oncogene |
container_volume | 30 |
creator | Leclercq, T M Moretti, P A B Pitson, S M |
description | Sphingosine kinase 1 (SK1) catalyses the formation of bioactive phospholipid sphingosine 1-phosphate (S1P). Elevated cellular SK1 activity and S1P levels enhance cell proliferation and survival, and are strongly implicated in tumourigenesis. Regulation of SK1 activity can occur through various mechanisms, including phosphorylation and protein–protein interactions. We have previously shown that eukaryotic elongation factor 1A (eEF1A) interacts with and directly activates SK1, but the mechanisms regulating this were undefined. Notably, eEF1A has GTPase activity and can exist in GTP- or GDP-bound forms, which are associated with distinct structural conformations of the protein. Here, we show that the guanine nucleotide-bound state of eEF1A regulates its ability to activate SK1, with eEF1A.GDP, but not eEF1A.GTP, enhancing SK1 activity
in vitro
. Furthermore, we show that enhancing cellular eEF1A.GDP levels through expression of a guanine nucleotide dissociation inhibitor of eEF1A, translationally controlled tumour protein (TCTP), increased SK1 activity in cells. We also examined a truncated isoform of eEF1A1, termed prostate tumour inducer-1 (PTI-1), which can induce neoplastic cell transformation through undefined mechanisms. PTI-1 lacks the G protein domain of eEF1A1 and is therefore unable to undergo the GTP-binding-induced conformational change. Notably, we found that PTI-1 can directly activate SK1 and that this seems to be essential for neoplastic transformation induced by PTI-1, as chemical SK1 inhibitors or overexpression of a dominant-negative SK1 blocked this process. Thus, this study defines the mechanism regulating eEF1A-mediated SK1 activation, and also establishes SK1 as being integral for PTI-1-induced oncogenesis. |
doi_str_mv | 10.1038/onc.2010.420 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_864957203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A247530288</galeid><sourcerecordid>A247530288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-34976ba379588765c7456e8d45dd725585fe4cba99f4f8a09ba0f0ac9fe3fc6a3</originalsourceid><addsrcrecordid>eNqF0s1u1DAQAOAIgehSuHFGFghxIYvjn9g-rqq2IFXiAufI64xTt4m92EmlvgmPy6x2oQJVQjlE8Xye8ThTVa8bum4o159SdGtG8Usw-qRaNUK1tZRGPK1W1EhaG8bZSfWilBtKqTKUPa9OGNVcc6VW1c_LxcYQgcTFjZDm0EMhGYZltDOQsrsOcUhlD25DtAVIQ6ybw52dQ4pke09gubX5Hjc6AmOKwyHgEaVMmg2xsSe7nO4wMbFkAneN9cpEPIbh_KLZ1LaU5AKW6wn2kgaIUEJ5WT3zdizw6vg-rb5fnH87-1xffb38cra5qp3QYq65MKrdWq6M1Fq10ikhW9C9kH2vmJRaehBua43xwmtLzdZST60zHrh3reWn1YdDXjzkjwXK3E2hOBhHGyEtpdOtMFIxyv8vRatNq1qG8u0_8iYtOWIbiKTgKAWidwc02BG6EH2as3X7lN2GCSU5ZVqjWj-i8OlhCi5F8AHX_9rw8bDB5VRKBt_tcpjwF3UN7fYD0-Eld_uB6XBgkL85HnXZTtD_wb8nBMH7I7DF2dFnG10oD47jrWM36OqDKxiKA-SHnh8t_AtR49fM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>845438464</pqid></control><display><type>article</type><title>Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Leclercq, T M ; Moretti, P A B ; Pitson, S M</creator><creatorcontrib>Leclercq, T M ; Moretti, P A B ; Pitson, S M</creatorcontrib><description>Sphingosine kinase 1 (SK1) catalyses the formation of bioactive phospholipid sphingosine 1-phosphate (S1P). Elevated cellular SK1 activity and S1P levels enhance cell proliferation and survival, and are strongly implicated in tumourigenesis. Regulation of SK1 activity can occur through various mechanisms, including phosphorylation and protein–protein interactions. We have previously shown that eukaryotic elongation factor 1A (eEF1A) interacts with and directly activates SK1, but the mechanisms regulating this were undefined. Notably, eEF1A has GTPase activity and can exist in GTP- or GDP-bound forms, which are associated with distinct structural conformations of the protein. Here, we show that the guanine nucleotide-bound state of eEF1A regulates its ability to activate SK1, with eEF1A.GDP, but not eEF1A.GTP, enhancing SK1 activity
in vitro
. Furthermore, we show that enhancing cellular eEF1A.GDP levels through expression of a guanine nucleotide dissociation inhibitor of eEF1A, translationally controlled tumour protein (TCTP), increased SK1 activity in cells. We also examined a truncated isoform of eEF1A1, termed prostate tumour inducer-1 (PTI-1), which can induce neoplastic cell transformation through undefined mechanisms. PTI-1 lacks the G protein domain of eEF1A1 and is therefore unable to undergo the GTP-binding-induced conformational change. Notably, we found that PTI-1 can directly activate SK1 and that this seems to be essential for neoplastic transformation induced by PTI-1, as chemical SK1 inhibitors or overexpression of a dominant-negative SK1 blocked this process. Thus, this study defines the mechanism regulating eEF1A-mediated SK1 activation, and also establishes SK1 as being integral for PTI-1-induced oncogenesis.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2010.420</identifier><identifier>PMID: 20838377</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/200 ; 631/80/86 ; 692/420/755 ; Animals ; Apoptosis ; Base Sequence ; Biological and medical sciences ; Carcinogenesis ; Catalysis ; Cell Biology ; Cell physiology ; Cell proliferation ; Cell survival ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cell Transformation, Neoplastic ; CHO Cells ; Control ; Cricetinae ; Cricetulus ; DNA Primers ; Elongation ; Enzyme Activation ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetics ; Guanine ; Guanine nucleotide-binding protein ; Guanine Nucleotides - physiology ; Guanosinetriphosphatase ; Human Genetics ; Humans ; Internal Medicine ; Kinases ; Medicine ; Medicine & Public Health ; Molecular and cellular biology ; Nucleotides ; Oncology ; Peptide Elongation Factor 1 - physiology ; Phosphates ; Phospholipids ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Physiological aspects ; Prostate ; Protein interaction ; Protein kinases ; Risk factors ; short-communication ; Sphingosine ; Sphingosine 1-phosphate ; sphingosine kinase ; Transformation ; Translation ; Tumorigenesis</subject><ispartof>Oncogene, 2011-01, Vol.30 (3), p.372-378</ispartof><rights>Macmillan Publishers Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 20, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-34976ba379588765c7456e8d45dd725585fe4cba99f4f8a09ba0f0ac9fe3fc6a3</citedby><cites>FETCH-LOGICAL-c484t-34976ba379588765c7456e8d45dd725585fe4cba99f4f8a09ba0f0ac9fe3fc6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/onc.2010.420$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/onc.2010.420$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23876643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20838377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leclercq, T M</creatorcontrib><creatorcontrib>Moretti, P A B</creatorcontrib><creatorcontrib>Pitson, S M</creatorcontrib><title>Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Sphingosine kinase 1 (SK1) catalyses the formation of bioactive phospholipid sphingosine 1-phosphate (S1P). Elevated cellular SK1 activity and S1P levels enhance cell proliferation and survival, and are strongly implicated in tumourigenesis. Regulation of SK1 activity can occur through various mechanisms, including phosphorylation and protein–protein interactions. We have previously shown that eukaryotic elongation factor 1A (eEF1A) interacts with and directly activates SK1, but the mechanisms regulating this were undefined. Notably, eEF1A has GTPase activity and can exist in GTP- or GDP-bound forms, which are associated with distinct structural conformations of the protein. Here, we show that the guanine nucleotide-bound state of eEF1A regulates its ability to activate SK1, with eEF1A.GDP, but not eEF1A.GTP, enhancing SK1 activity
in vitro
. Furthermore, we show that enhancing cellular eEF1A.GDP levels through expression of a guanine nucleotide dissociation inhibitor of eEF1A, translationally controlled tumour protein (TCTP), increased SK1 activity in cells. We also examined a truncated isoform of eEF1A1, termed prostate tumour inducer-1 (PTI-1), which can induce neoplastic cell transformation through undefined mechanisms. PTI-1 lacks the G protein domain of eEF1A1 and is therefore unable to undergo the GTP-binding-induced conformational change. Notably, we found that PTI-1 can directly activate SK1 and that this seems to be essential for neoplastic transformation induced by PTI-1, as chemical SK1 inhibitors or overexpression of a dominant-negative SK1 blocked this process. Thus, this study defines the mechanism regulating eEF1A-mediated SK1 activation, and also establishes SK1 as being integral for PTI-1-induced oncogenesis.</description><subject>631/208/200</subject><subject>631/80/86</subject><subject>692/420/755</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Carcinogenesis</subject><subject>Catalysis</subject><subject>Cell Biology</subject><subject>Cell physiology</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cell Transformation, Neoplastic</subject><subject>CHO Cells</subject><subject>Control</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>DNA Primers</subject><subject>Elongation</subject><subject>Enzyme Activation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Guanine</subject><subject>Guanine nucleotide-binding protein</subject><subject>Guanine Nucleotides - physiology</subject><subject>Guanosinetriphosphatase</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Molecular and cellular biology</subject><subject>Nucleotides</subject><subject>Oncology</subject><subject>Peptide Elongation Factor 1 - physiology</subject><subject>Phosphates</subject><subject>Phospholipids</subject><subject>Phosphorylation</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Physiological aspects</subject><subject>Prostate</subject><subject>Protein interaction</subject><subject>Protein kinases</subject><subject>Risk factors</subject><subject>short-communication</subject><subject>Sphingosine</subject><subject>Sphingosine 1-phosphate</subject><subject>sphingosine kinase</subject><subject>Transformation</subject><subject>Translation</subject><subject>Tumorigenesis</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s1u1DAQAOAIgehSuHFGFghxIYvjn9g-rqq2IFXiAufI64xTt4m92EmlvgmPy6x2oQJVQjlE8Xye8ThTVa8bum4o159SdGtG8Usw-qRaNUK1tZRGPK1W1EhaG8bZSfWilBtKqTKUPa9OGNVcc6VW1c_LxcYQgcTFjZDm0EMhGYZltDOQsrsOcUhlD25DtAVIQ6ybw52dQ4pke09gubX5Hjc6AmOKwyHgEaVMmg2xsSe7nO4wMbFkAneN9cpEPIbh_KLZ1LaU5AKW6wn2kgaIUEJ5WT3zdizw6vg-rb5fnH87-1xffb38cra5qp3QYq65MKrdWq6M1Fq10ikhW9C9kH2vmJRaehBua43xwmtLzdZST60zHrh3reWn1YdDXjzkjwXK3E2hOBhHGyEtpdOtMFIxyv8vRatNq1qG8u0_8iYtOWIbiKTgKAWidwc02BG6EH2as3X7lN2GCSU5ZVqjWj-i8OlhCi5F8AHX_9rw8bDB5VRKBt_tcpjwF3UN7fYD0-Eld_uB6XBgkL85HnXZTtD_wb8nBMH7I7DF2dFnG10oD47jrWM36OqDKxiKA-SHnh8t_AtR49fM</recordid><startdate>20110120</startdate><enddate>20110120</enddate><creator>Leclercq, T M</creator><creator>Moretti, P A B</creator><creator>Pitson, S M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110120</creationdate><title>Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis</title><author>Leclercq, T M ; Moretti, P A B ; Pitson, S M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-34976ba379588765c7456e8d45dd725585fe4cba99f4f8a09ba0f0ac9fe3fc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/208/200</topic><topic>631/80/86</topic><topic>692/420/755</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Carcinogenesis</topic><topic>Catalysis</topic><topic>Cell Biology</topic><topic>Cell physiology</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cell Transformation, Neoplastic</topic><topic>CHO Cells</topic><topic>Control</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>DNA Primers</topic><topic>Elongation</topic><topic>Enzyme Activation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Guanine</topic><topic>Guanine nucleotide-binding protein</topic><topic>Guanine Nucleotides - physiology</topic><topic>Guanosinetriphosphatase</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Molecular and cellular biology</topic><topic>Nucleotides</topic><topic>Oncology</topic><topic>Peptide Elongation Factor 1 - physiology</topic><topic>Phosphates</topic><topic>Phospholipids</topic><topic>Phosphorylation</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Physiological aspects</topic><topic>Prostate</topic><topic>Protein interaction</topic><topic>Protein kinases</topic><topic>Risk factors</topic><topic>short-communication</topic><topic>Sphingosine</topic><topic>Sphingosine 1-phosphate</topic><topic>sphingosine kinase</topic><topic>Transformation</topic><topic>Translation</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leclercq, T M</creatorcontrib><creatorcontrib>Moretti, P A B</creatorcontrib><creatorcontrib>Pitson, S M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leclercq, T M</au><au>Moretti, P A B</au><au>Pitson, S M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2011-01-20</date><risdate>2011</risdate><volume>30</volume><issue>3</issue><spage>372</spage><epage>378</epage><pages>372-378</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Sphingosine kinase 1 (SK1) catalyses the formation of bioactive phospholipid sphingosine 1-phosphate (S1P). Elevated cellular SK1 activity and S1P levels enhance cell proliferation and survival, and are strongly implicated in tumourigenesis. Regulation of SK1 activity can occur through various mechanisms, including phosphorylation and protein–protein interactions. We have previously shown that eukaryotic elongation factor 1A (eEF1A) interacts with and directly activates SK1, but the mechanisms regulating this were undefined. Notably, eEF1A has GTPase activity and can exist in GTP- or GDP-bound forms, which are associated with distinct structural conformations of the protein. Here, we show that the guanine nucleotide-bound state of eEF1A regulates its ability to activate SK1, with eEF1A.GDP, but not eEF1A.GTP, enhancing SK1 activity
in vitro
. Furthermore, we show that enhancing cellular eEF1A.GDP levels through expression of a guanine nucleotide dissociation inhibitor of eEF1A, translationally controlled tumour protein (TCTP), increased SK1 activity in cells. We also examined a truncated isoform of eEF1A1, termed prostate tumour inducer-1 (PTI-1), which can induce neoplastic cell transformation through undefined mechanisms. PTI-1 lacks the G protein domain of eEF1A1 and is therefore unable to undergo the GTP-binding-induced conformational change. Notably, we found that PTI-1 can directly activate SK1 and that this seems to be essential for neoplastic transformation induced by PTI-1, as chemical SK1 inhibitors or overexpression of a dominant-negative SK1 blocked this process. Thus, this study defines the mechanism regulating eEF1A-mediated SK1 activation, and also establishes SK1 as being integral for PTI-1-induced oncogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20838377</pmid><doi>10.1038/onc.2010.420</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2011-01, Vol.30 (3), p.372-378 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_864957203 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 631/208/200 631/80/86 692/420/755 Animals Apoptosis Base Sequence Biological and medical sciences Carcinogenesis Catalysis Cell Biology Cell physiology Cell proliferation Cell survival Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes Cell Transformation, Neoplastic CHO Cells Control Cricetinae Cricetulus DNA Primers Elongation Enzyme Activation Fundamental and applied biological sciences. Psychology Genetic aspects Genetics Guanine Guanine nucleotide-binding protein Guanine Nucleotides - physiology Guanosinetriphosphatase Human Genetics Humans Internal Medicine Kinases Medicine Medicine & Public Health Molecular and cellular biology Nucleotides Oncology Peptide Elongation Factor 1 - physiology Phosphates Phospholipids Phosphorylation Phosphotransferases (Alcohol Group Acceptor) - metabolism Physiological aspects Prostate Protein interaction Protein kinases Risk factors short-communication Sphingosine Sphingosine 1-phosphate sphingosine kinase Transformation Translation Tumorigenesis |
title | Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanine%20nucleotides%20regulate%20sphingosine%20kinase%201%20activation%20by%20eukaryotic%20elongation%20factor%201A%20and%20provide%20a%20mechanism%20for%20eEF1A-associated%20oncogenesis&rft.jtitle=Oncogene&rft.au=Leclercq,%20T%20M&rft.date=2011-01-20&rft.volume=30&rft.issue=3&rft.spage=372&rft.epage=378&rft.pages=372-378&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2010.420&rft_dat=%3Cgale_proqu%3EA247530288%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=845438464&rft_id=info:pmid/20838377&rft_galeid=A247530288&rfr_iscdi=true |