Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP
Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows h...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2009-02, Vol.281 (2), p.135-146 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | Molecular genetics and genomics : MGG |
container_volume | 281 |
creator | Pandey, Ajay K Jain, Preti Podila, Gopi K Tudzynski, Bettina Davis, Maria R |
description | Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator. |
doi_str_mv | 10.1007/s00438-008-0397-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864952709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864952709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</originalsourceid><addsrcrecordid>eNp9kU9rHCEYxiW0NMm2H6CXVnpI28OkvjrqeEyW9A-kNJDkLK46ywRXtzpz2G8fl1nS0EPAV1_0eX6iD0LvgZwDIfJbIaRlXUNILaZkw47QCQiQTSsoe_XUAz9Gp6U8EAJSUPkGHYMisK8TVJYpODxEN1nv8GUa824cCrZD9Nkb7GMKpnj85dJe1baBr7ifoh2HFAs2deAxm1hsHrb7PRNw9uspmDFlbGIFV1SKY04hVPxqh-3F75u36HVvQvHvDusC3X-_ulv-bK7__Pi1vLhubEv52FDaU2edB26t6XvuiGIEKFPOCEYJYZ1YOWDWCabsyjlOFVCok3Ku7wSwBfo8c7c5_Z18GfVmKNaHYKJPU9GdaBWnsmIX6OxFpRCdbJXkVfjpP-FDmnJ9d9GgWhC8fmsVwSyyOZWSfa-3ediYvNNA9D44PQena3B6H5xm1fPhAJ5WG-_-OQ5JVQGdBaUexbXPz25-gfpxNvUmabPOQ9H3t7TSCPBOdpyxR1Dkq4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194165119</pqid></control><display><type>article</type><title>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Pandey, Ajay K ; Jain, Preti ; Podila, Gopi K ; Tudzynski, Bettina ; Davis, Maria R</creator><creatorcontrib>Pandey, Ajay K ; Jain, Preti ; Podila, Gopi K ; Tudzynski, Bettina ; Davis, Maria R</creatorcontrib><description>Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-008-0397-3</identifier><identifier>PMID: 19011901</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino Acid Sequence ; Animal Genetics and Genomics ; Arabidopsis ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Botrytis ; Botrytis - enzymology ; Botrytis cinerea ; Cold storage ; Cold Temperature ; Cyclic AMP - physiology ; DNA Primers ; DNA, Complementary ; Electrophoretic Mobility Shift Assay ; Enzyme Induction ; Gene Expression Regulation, Enzymologic - physiology ; Genes ; Genomics ; Glycerol ; Human Genetics ; Humans ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Molecular Sequence Data ; Original Paper ; Pathogens ; Phosphopyruvate Hydratase - biosynthesis ; Phosphopyruvate Hydratase - chemistry ; Phosphopyruvate Hydratase - physiology ; Plant Genetics and Genomics ; Polymerase Chain Reaction ; Proteins ; Sequence Homology, Amino Acid ; Temperature ; Transcription, Genetic - physiology ; Yeast</subject><ispartof>Molecular genetics and genomics : MGG, 2009-02, Vol.281 (2), p.135-146</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</citedby><cites>FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-008-0397-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-008-0397-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19011901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Ajay K</creatorcontrib><creatorcontrib>Jain, Preti</creatorcontrib><creatorcontrib>Podila, Gopi K</creatorcontrib><creatorcontrib>Tudzynski, Bettina</creatorcontrib><creatorcontrib>Davis, Maria R</creatorcontrib><title>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.</description><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Botrytis</subject><subject>Botrytis - enzymology</subject><subject>Botrytis cinerea</subject><subject>Cold storage</subject><subject>Cold Temperature</subject><subject>Cyclic AMP - physiology</subject><subject>DNA Primers</subject><subject>DNA, Complementary</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Enzyme Induction</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Genes</subject><subject>Genomics</subject><subject>Glycerol</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Molecular Sequence Data</subject><subject>Original Paper</subject><subject>Pathogens</subject><subject>Phosphopyruvate Hydratase - biosynthesis</subject><subject>Phosphopyruvate Hydratase - chemistry</subject><subject>Phosphopyruvate Hydratase - physiology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Temperature</subject><subject>Transcription, Genetic - physiology</subject><subject>Yeast</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rHCEYxiW0NMm2H6CXVnpI28OkvjrqeEyW9A-kNJDkLK46ywRXtzpz2G8fl1nS0EPAV1_0eX6iD0LvgZwDIfJbIaRlXUNILaZkw47QCQiQTSsoe_XUAz9Gp6U8EAJSUPkGHYMisK8TVJYpODxEN1nv8GUa824cCrZD9Nkb7GMKpnj85dJe1baBr7ifoh2HFAs2deAxm1hsHrb7PRNw9uspmDFlbGIFV1SKY04hVPxqh-3F75u36HVvQvHvDusC3X-_ulv-bK7__Pi1vLhubEv52FDaU2edB26t6XvuiGIEKFPOCEYJYZ1YOWDWCabsyjlOFVCok3Ku7wSwBfo8c7c5_Z18GfVmKNaHYKJPU9GdaBWnsmIX6OxFpRCdbJXkVfjpP-FDmnJ9d9GgWhC8fmsVwSyyOZWSfa-3ediYvNNA9D44PQena3B6H5xm1fPhAJ5WG-_-OQ5JVQGdBaUexbXPz25-gfpxNvUmabPOQ9H3t7TSCPBOdpyxR1Dkq4g</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Pandey, Ajay K</creator><creator>Jain, Preti</creator><creator>Podila, Gopi K</creator><creator>Tudzynski, Bettina</creator><creator>Davis, Maria R</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</title><author>Pandey, Ajay K ; Jain, Preti ; Podila, Gopi K ; Tudzynski, Bettina ; Davis, Maria R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Botrytis</topic><topic>Botrytis - enzymology</topic><topic>Botrytis cinerea</topic><topic>Cold storage</topic><topic>Cold Temperature</topic><topic>Cyclic AMP - physiology</topic><topic>DNA Primers</topic><topic>DNA, Complementary</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Enzyme Induction</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Genes</topic><topic>Genomics</topic><topic>Glycerol</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Molecular Sequence Data</topic><topic>Original Paper</topic><topic>Pathogens</topic><topic>Phosphopyruvate Hydratase - biosynthesis</topic><topic>Phosphopyruvate Hydratase - chemistry</topic><topic>Phosphopyruvate Hydratase - physiology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Temperature</topic><topic>Transcription, Genetic - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Ajay K</creatorcontrib><creatorcontrib>Jain, Preti</creatorcontrib><creatorcontrib>Podila, Gopi K</creatorcontrib><creatorcontrib>Tudzynski, Bettina</creatorcontrib><creatorcontrib>Davis, Maria R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Ajay K</au><au>Jain, Preti</au><au>Podila, Gopi K</au><au>Tudzynski, Bettina</au><au>Davis, Maria R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>281</volume><issue>2</issue><spage>135</spage><epage>146</epage><pages>135-146</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19011901</pmid><doi>10.1007/s00438-008-0397-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4615 |
ispartof | Molecular genetics and genomics : MGG, 2009-02, Vol.281 (2), p.135-146 |
issn | 1617-4615 1617-4623 |
language | eng |
recordid | cdi_proquest_miscellaneous_864952709 |
source | MEDLINE; SpringerNature Journals |
subjects | Amino Acid Sequence Animal Genetics and Genomics Arabidopsis Base Sequence Biochemistry Biomedical and Life Sciences Botrytis Botrytis - enzymology Botrytis cinerea Cold storage Cold Temperature Cyclic AMP - physiology DNA Primers DNA, Complementary Electrophoretic Mobility Shift Assay Enzyme Induction Gene Expression Regulation, Enzymologic - physiology Genes Genomics Glycerol Human Genetics Humans Kinases Life Sciences Microbial Genetics and Genomics Molecular Sequence Data Original Paper Pathogens Phosphopyruvate Hydratase - biosynthesis Phosphopyruvate Hydratase - chemistry Phosphopyruvate Hydratase - physiology Plant Genetics and Genomics Polymerase Chain Reaction Proteins Sequence Homology, Amino Acid Temperature Transcription, Genetic - physiology Yeast |
title | Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20induced%20Botrytis%20cinerea%20enolase%20(BcEnol-1)%20functions%20as%20a%20transcriptional%20regulator%20and%20is%20controlled%20by%20cAMP&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Pandey,%20Ajay%20K&rft.date=2009-02-01&rft.volume=281&rft.issue=2&rft.spage=135&rft.epage=146&rft.pages=135-146&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-008-0397-3&rft_dat=%3Cproquest_cross%3E864952709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194165119&rft_id=info:pmid/19011901&rfr_iscdi=true |