Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP

Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2009-02, Vol.281 (2), p.135-146
Hauptverfasser: Pandey, Ajay K, Jain, Preti, Podila, Gopi K, Tudzynski, Bettina, Davis, Maria R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 2
container_start_page 135
container_title Molecular genetics and genomics : MGG
container_volume 281
creator Pandey, Ajay K
Jain, Preti
Podila, Gopi K
Tudzynski, Bettina
Davis, Maria R
description Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.
doi_str_mv 10.1007/s00438-008-0397-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864952709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864952709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</originalsourceid><addsrcrecordid>eNp9kU9rHCEYxiW0NMm2H6CXVnpI28OkvjrqeEyW9A-kNJDkLK46ywRXtzpz2G8fl1nS0EPAV1_0eX6iD0LvgZwDIfJbIaRlXUNILaZkw47QCQiQTSsoe_XUAz9Gp6U8EAJSUPkGHYMisK8TVJYpODxEN1nv8GUa824cCrZD9Nkb7GMKpnj85dJe1baBr7ifoh2HFAs2deAxm1hsHrb7PRNw9uspmDFlbGIFV1SKY04hVPxqh-3F75u36HVvQvHvDusC3X-_ulv-bK7__Pi1vLhubEv52FDaU2edB26t6XvuiGIEKFPOCEYJYZ1YOWDWCabsyjlOFVCok3Ku7wSwBfo8c7c5_Z18GfVmKNaHYKJPU9GdaBWnsmIX6OxFpRCdbJXkVfjpP-FDmnJ9d9GgWhC8fmsVwSyyOZWSfa-3ediYvNNA9D44PQena3B6H5xm1fPhAJ5WG-_-OQ5JVQGdBaUexbXPz25-gfpxNvUmabPOQ9H3t7TSCPBOdpyxR1Dkq4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194165119</pqid></control><display><type>article</type><title>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Pandey, Ajay K ; Jain, Preti ; Podila, Gopi K ; Tudzynski, Bettina ; Davis, Maria R</creator><creatorcontrib>Pandey, Ajay K ; Jain, Preti ; Podila, Gopi K ; Tudzynski, Bettina ; Davis, Maria R</creatorcontrib><description>Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-008-0397-3</identifier><identifier>PMID: 19011901</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino Acid Sequence ; Animal Genetics and Genomics ; Arabidopsis ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Botrytis ; Botrytis - enzymology ; Botrytis cinerea ; Cold storage ; Cold Temperature ; Cyclic AMP - physiology ; DNA Primers ; DNA, Complementary ; Electrophoretic Mobility Shift Assay ; Enzyme Induction ; Gene Expression Regulation, Enzymologic - physiology ; Genes ; Genomics ; Glycerol ; Human Genetics ; Humans ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Molecular Sequence Data ; Original Paper ; Pathogens ; Phosphopyruvate Hydratase - biosynthesis ; Phosphopyruvate Hydratase - chemistry ; Phosphopyruvate Hydratase - physiology ; Plant Genetics and Genomics ; Polymerase Chain Reaction ; Proteins ; Sequence Homology, Amino Acid ; Temperature ; Transcription, Genetic - physiology ; Yeast</subject><ispartof>Molecular genetics and genomics : MGG, 2009-02, Vol.281 (2), p.135-146</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</citedby><cites>FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-008-0397-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-008-0397-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19011901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Ajay K</creatorcontrib><creatorcontrib>Jain, Preti</creatorcontrib><creatorcontrib>Podila, Gopi K</creatorcontrib><creatorcontrib>Tudzynski, Bettina</creatorcontrib><creatorcontrib>Davis, Maria R</creatorcontrib><title>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.</description><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Botrytis</subject><subject>Botrytis - enzymology</subject><subject>Botrytis cinerea</subject><subject>Cold storage</subject><subject>Cold Temperature</subject><subject>Cyclic AMP - physiology</subject><subject>DNA Primers</subject><subject>DNA, Complementary</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Enzyme Induction</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Genes</subject><subject>Genomics</subject><subject>Glycerol</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Molecular Sequence Data</subject><subject>Original Paper</subject><subject>Pathogens</subject><subject>Phosphopyruvate Hydratase - biosynthesis</subject><subject>Phosphopyruvate Hydratase - chemistry</subject><subject>Phosphopyruvate Hydratase - physiology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Temperature</subject><subject>Transcription, Genetic - physiology</subject><subject>Yeast</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rHCEYxiW0NMm2H6CXVnpI28OkvjrqeEyW9A-kNJDkLK46ywRXtzpz2G8fl1nS0EPAV1_0eX6iD0LvgZwDIfJbIaRlXUNILaZkw47QCQiQTSsoe_XUAz9Gp6U8EAJSUPkGHYMisK8TVJYpODxEN1nv8GUa824cCrZD9Nkb7GMKpnj85dJe1baBr7ifoh2HFAs2deAxm1hsHrb7PRNw9uspmDFlbGIFV1SKY04hVPxqh-3F75u36HVvQvHvDusC3X-_ulv-bK7__Pi1vLhubEv52FDaU2edB26t6XvuiGIEKFPOCEYJYZ1YOWDWCabsyjlOFVCok3Ku7wSwBfo8c7c5_Z18GfVmKNaHYKJPU9GdaBWnsmIX6OxFpRCdbJXkVfjpP-FDmnJ9d9GgWhC8fmsVwSyyOZWSfa-3ediYvNNA9D44PQena3B6H5xm1fPhAJ5WG-_-OQ5JVQGdBaUexbXPz25-gfpxNvUmabPOQ9H3t7TSCPBOdpyxR1Dkq4g</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Pandey, Ajay K</creator><creator>Jain, Preti</creator><creator>Podila, Gopi K</creator><creator>Tudzynski, Bettina</creator><creator>Davis, Maria R</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</title><author>Pandey, Ajay K ; Jain, Preti ; Podila, Gopi K ; Tudzynski, Bettina ; Davis, Maria R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-22f2dcde15ccaff5d09301239da63200386bd13cd639cbdd5291212919ddf8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Botrytis</topic><topic>Botrytis - enzymology</topic><topic>Botrytis cinerea</topic><topic>Cold storage</topic><topic>Cold Temperature</topic><topic>Cyclic AMP - physiology</topic><topic>DNA Primers</topic><topic>DNA, Complementary</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Enzyme Induction</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Genes</topic><topic>Genomics</topic><topic>Glycerol</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Molecular Sequence Data</topic><topic>Original Paper</topic><topic>Pathogens</topic><topic>Phosphopyruvate Hydratase - biosynthesis</topic><topic>Phosphopyruvate Hydratase - chemistry</topic><topic>Phosphopyruvate Hydratase - physiology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Temperature</topic><topic>Transcription, Genetic - physiology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Ajay K</creatorcontrib><creatorcontrib>Jain, Preti</creatorcontrib><creatorcontrib>Podila, Gopi K</creatorcontrib><creatorcontrib>Tudzynski, Bettina</creatorcontrib><creatorcontrib>Davis, Maria R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Ajay K</au><au>Jain, Preti</au><au>Podila, Gopi K</au><au>Tudzynski, Bettina</au><au>Davis, Maria R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>281</volume><issue>2</issue><spage>135</spage><epage>146</epage><pages>135-146</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C₆ protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19011901</pmid><doi>10.1007/s00438-008-0397-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2009-02, Vol.281 (2), p.135-146
issn 1617-4615
1617-4623
language eng
recordid cdi_proquest_miscellaneous_864952709
source MEDLINE; SpringerNature Journals
subjects Amino Acid Sequence
Animal Genetics and Genomics
Arabidopsis
Base Sequence
Biochemistry
Biomedical and Life Sciences
Botrytis
Botrytis - enzymology
Botrytis cinerea
Cold storage
Cold Temperature
Cyclic AMP - physiology
DNA Primers
DNA, Complementary
Electrophoretic Mobility Shift Assay
Enzyme Induction
Gene Expression Regulation, Enzymologic - physiology
Genes
Genomics
Glycerol
Human Genetics
Humans
Kinases
Life Sciences
Microbial Genetics and Genomics
Molecular Sequence Data
Original Paper
Pathogens
Phosphopyruvate Hydratase - biosynthesis
Phosphopyruvate Hydratase - chemistry
Phosphopyruvate Hydratase - physiology
Plant Genetics and Genomics
Polymerase Chain Reaction
Proteins
Sequence Homology, Amino Acid
Temperature
Transcription, Genetic - physiology
Yeast
title Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20induced%20Botrytis%20cinerea%20enolase%20(BcEnol-1)%20functions%20as%20a%20transcriptional%20regulator%20and%20is%20controlled%20by%20cAMP&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Pandey,%20Ajay%20K&rft.date=2009-02-01&rft.volume=281&rft.issue=2&rft.spage=135&rft.epage=146&rft.pages=135-146&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-008-0397-3&rft_dat=%3Cproquest_cross%3E864952709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194165119&rft_id=info:pmid/19011901&rfr_iscdi=true