Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization
We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase ), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially af...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2007-07, Vol.10 (7), p.828-837 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 7 |
container_start_page | 828 |
container_title | Nature neuroscience |
container_volume | 10 |
creator | Chihara, Takahiro Luginbuhl, David Luo, Liqun |
description | We identified a mutation in
Aats-gly
(also known as
gars
or
glycyl-tRNA synthetase
), the
Drosophila melanogaster
ortholog of the human
GARS
gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of
gars
in
Drosophila
neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and
Drosophila
genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in
Drosophila
, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites. |
doi_str_mv | 10.1038/nn1910 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_864951778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186690268</galeid><sourcerecordid>A186690268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</originalsourceid><addsrcrecordid>eNqFkt9rHCEQx6U0NGna_gll6UNKHzZVdx31MRz9EQgE0vZZXHWvhl29qgtJ__p6uYMjeWjwQWfmM8PXL4PQO4LPCe7E5xCIJPgFOiGsh5ZwCi_rG0veAmVwjF7nfIsx5kzIV-iYcEalFPwEqdV9iZtJ59mbRgfbzL5E8zsGm7yemk2KxfnQlKRDnnTxMTQ11Hcx1OqWt26LltpdXJr9QzoNMfm_D_QbdDTqKbu3-_sU_fr65efqe3t1_e1ydXHVGtaJ0lJwHRsABpCWaawF5s4yo6Fno5HGGN4ZisFwQS2wnmBrKR61kYMbR0r77hR93M2tiv8sLhc1-2zcNOng4pKVgF4ywrmo5Nl_SY6B8Uo-CxIJkhDBKvjhCXgbl1SdyIrynlPGpKzQ-Q5a68kpH8ZYPTX1WFetj8GNvuYviACQmMJW56dHDZUp7q6s9ZKzuvxx85jdSzUp5pzcqDbJzzrdK4LVdj_Ubj8q-H4vdRlmZw_YfiEOPuZaCmuXDn95MuofZijCGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274725599</pqid></control><display><type>article</type><title>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Chihara, Takahiro ; Luginbuhl, David ; Luo, Liqun</creator><creatorcontrib>Chihara, Takahiro ; Luginbuhl, David ; Luo, Liqun</creatorcontrib><description>We identified a mutation in
Aats-gly
(also known as
gars
or
glycyl-tRNA synthetase
), the
Drosophila melanogaster
ortholog of the human
GARS
gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of
gars
in
Drosophila
neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and
Drosophila
genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in
Drosophila
, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1910</identifier><identifier>PMID: 17529987</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animal Genetics and Genomics ; Animals ; Axons - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Cercopithecus aethiops ; Cloning ; Cloning, Molecular ; COS Cells ; Cytoplasm - metabolism ; Dendrites - physiology ; Disease ; DNA - genetics ; Drosophila ; Drosophila melanogaster ; Gene mutations ; Genes ; Genetic aspects ; Genetic engineering ; Genetic translation ; Genetic Vectors ; Glycine-tRNA Ligase - genetics ; Glycine-tRNA Ligase - physiology ; Humans ; Identification and classification ; Insects ; Mitochondria - metabolism ; Morphogenesis ; Mushroom Bodies - physiology ; Mushroom Bodies - ultrastructure ; Mutation ; Mutation, Missense - physiology ; Nerve proteins ; Neurobiology ; Neurons ; Neurons - physiology ; Neurons - ultrastructure ; Neurosciences ; Phenotype ; Physiological aspects ; Point Mutation - genetics ; Point Mutation - physiology ; Protein Biosynthesis - physiology ; Protein synthesis ; Proteins</subject><ispartof>Nature neuroscience, 2007-07, Vol.10 (7), p.828-837</ispartof><rights>Springer Nature America, Inc. 2007</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</citedby><cites>FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1910$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1910$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17529987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chihara, Takahiro</creatorcontrib><creatorcontrib>Luginbuhl, David</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><title>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>We identified a mutation in
Aats-gly
(also known as
gars
or
glycyl-tRNA synthetase
), the
Drosophila melanogaster
ortholog of the human
GARS
gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of
gars
in
Drosophila
neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and
Drosophila
genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in
Drosophila
, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cercopithecus aethiops</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>COS Cells</subject><subject>Cytoplasm - metabolism</subject><subject>Dendrites - physiology</subject><subject>Disease</subject><subject>DNA - genetics</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic translation</subject><subject>Genetic Vectors</subject><subject>Glycine-tRNA Ligase - genetics</subject><subject>Glycine-tRNA Ligase - physiology</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Insects</subject><subject>Mitochondria - metabolism</subject><subject>Morphogenesis</subject><subject>Mushroom Bodies - physiology</subject><subject>Mushroom Bodies - ultrastructure</subject><subject>Mutation</subject><subject>Mutation, Missense - physiology</subject><subject>Nerve proteins</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Point Mutation - genetics</subject><subject>Point Mutation - physiology</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein synthesis</subject><subject>Proteins</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt9rHCEQx6U0NGna_gll6UNKHzZVdx31MRz9EQgE0vZZXHWvhl29qgtJ__p6uYMjeWjwQWfmM8PXL4PQO4LPCe7E5xCIJPgFOiGsh5ZwCi_rG0veAmVwjF7nfIsx5kzIV-iYcEalFPwEqdV9iZtJ59mbRgfbzL5E8zsGm7yemk2KxfnQlKRDnnTxMTQ11Hcx1OqWt26LltpdXJr9QzoNMfm_D_QbdDTqKbu3-_sU_fr65efqe3t1_e1ydXHVGtaJ0lJwHRsABpCWaawF5s4yo6Fno5HGGN4ZisFwQS2wnmBrKR61kYMbR0r77hR93M2tiv8sLhc1-2zcNOng4pKVgF4ywrmo5Nl_SY6B8Uo-CxIJkhDBKvjhCXgbl1SdyIrynlPGpKzQ-Q5a68kpH8ZYPTX1WFetj8GNvuYviACQmMJW56dHDZUp7q6s9ZKzuvxx85jdSzUp5pzcqDbJzzrdK4LVdj_Ubj8q-H4vdRlmZw_YfiEOPuZaCmuXDn95MuofZijCGQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Chihara, Takahiro</creator><creator>Luginbuhl, David</creator><creator>Luo, Liqun</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7SS</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</title><author>Chihara, Takahiro ; Luginbuhl, David ; Luo, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cercopithecus aethiops</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>COS Cells</topic><topic>Cytoplasm - metabolism</topic><topic>Dendrites - physiology</topic><topic>Disease</topic><topic>DNA - genetics</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic translation</topic><topic>Genetic Vectors</topic><topic>Glycine-tRNA Ligase - genetics</topic><topic>Glycine-tRNA Ligase - physiology</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Insects</topic><topic>Mitochondria - metabolism</topic><topic>Morphogenesis</topic><topic>Mushroom Bodies - physiology</topic><topic>Mushroom Bodies - ultrastructure</topic><topic>Mutation</topic><topic>Mutation, Missense - physiology</topic><topic>Nerve proteins</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Point Mutation - genetics</topic><topic>Point Mutation - physiology</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein synthesis</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chihara, Takahiro</creatorcontrib><creatorcontrib>Luginbuhl, David</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chihara, Takahiro</au><au>Luginbuhl, David</au><au>Luo, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>10</volume><issue>7</issue><spage>828</spage><epage>837</epage><pages>828-837</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>We identified a mutation in
Aats-gly
(also known as
gars
or
glycyl-tRNA synthetase
), the
Drosophila melanogaster
ortholog of the human
GARS
gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of
gars
in
Drosophila
neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and
Drosophila
genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in
Drosophila
, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17529987</pmid><doi>10.1038/nn1910</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2007-07, Vol.10 (7), p.828-837 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_864951778 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | Animal Genetics and Genomics Animals Axons - physiology Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Cercopithecus aethiops Cloning Cloning, Molecular COS Cells Cytoplasm - metabolism Dendrites - physiology Disease DNA - genetics Drosophila Drosophila melanogaster Gene mutations Genes Genetic aspects Genetic engineering Genetic translation Genetic Vectors Glycine-tRNA Ligase - genetics Glycine-tRNA Ligase - physiology Humans Identification and classification Insects Mitochondria - metabolism Morphogenesis Mushroom Bodies - physiology Mushroom Bodies - ultrastructure Mutation Mutation, Missense - physiology Nerve proteins Neurobiology Neurons Neurons - physiology Neurons - ultrastructure Neurosciences Phenotype Physiological aspects Point Mutation - genetics Point Mutation - physiology Protein Biosynthesis - physiology Protein synthesis Proteins |
title | Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoplasmic%20and%20mitochondrial%20protein%20translation%20in%20axonal%20and%20dendritic%20terminal%20arborization&rft.jtitle=Nature%20neuroscience&rft.au=Chihara,%20Takahiro&rft.date=2007-07-01&rft.volume=10&rft.issue=7&rft.spage=828&rft.epage=837&rft.pages=828-837&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1910&rft_dat=%3Cgale_proqu%3EA186690268%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274725599&rft_id=info:pmid/17529987&rft_galeid=A186690268&rfr_iscdi=true |