Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization

We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase ), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially af...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2007-07, Vol.10 (7), p.828-837
Hauptverfasser: Chihara, Takahiro, Luginbuhl, David, Luo, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 837
container_issue 7
container_start_page 828
container_title Nature neuroscience
container_volume 10
creator Chihara, Takahiro
Luginbuhl, David
Luo, Liqun
description We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase ), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila , and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.
doi_str_mv 10.1038/nn1910
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_864951778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186690268</galeid><sourcerecordid>A186690268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</originalsourceid><addsrcrecordid>eNqFkt9rHCEQx6U0NGna_gll6UNKHzZVdx31MRz9EQgE0vZZXHWvhl29qgtJ__p6uYMjeWjwQWfmM8PXL4PQO4LPCe7E5xCIJPgFOiGsh5ZwCi_rG0veAmVwjF7nfIsx5kzIV-iYcEalFPwEqdV9iZtJ59mbRgfbzL5E8zsGm7yemk2KxfnQlKRDnnTxMTQ11Hcx1OqWt26LltpdXJr9QzoNMfm_D_QbdDTqKbu3-_sU_fr65efqe3t1_e1ydXHVGtaJ0lJwHRsABpCWaawF5s4yo6Fno5HGGN4ZisFwQS2wnmBrKR61kYMbR0r77hR93M2tiv8sLhc1-2zcNOng4pKVgF4ywrmo5Nl_SY6B8Uo-CxIJkhDBKvjhCXgbl1SdyIrynlPGpKzQ-Q5a68kpH8ZYPTX1WFetj8GNvuYviACQmMJW56dHDZUp7q6s9ZKzuvxx85jdSzUp5pzcqDbJzzrdK4LVdj_Ubj8q-H4vdRlmZw_YfiEOPuZaCmuXDn95MuofZijCGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274725599</pqid></control><display><type>article</type><title>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Chihara, Takahiro ; Luginbuhl, David ; Luo, Liqun</creator><creatorcontrib>Chihara, Takahiro ; Luginbuhl, David ; Luo, Liqun</creatorcontrib><description>We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase ), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila , and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1910</identifier><identifier>PMID: 17529987</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animal Genetics and Genomics ; Animals ; Axons - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Cercopithecus aethiops ; Cloning ; Cloning, Molecular ; COS Cells ; Cytoplasm - metabolism ; Dendrites - physiology ; Disease ; DNA - genetics ; Drosophila ; Drosophila melanogaster ; Gene mutations ; Genes ; Genetic aspects ; Genetic engineering ; Genetic translation ; Genetic Vectors ; Glycine-tRNA Ligase - genetics ; Glycine-tRNA Ligase - physiology ; Humans ; Identification and classification ; Insects ; Mitochondria - metabolism ; Morphogenesis ; Mushroom Bodies - physiology ; Mushroom Bodies - ultrastructure ; Mutation ; Mutation, Missense - physiology ; Nerve proteins ; Neurobiology ; Neurons ; Neurons - physiology ; Neurons - ultrastructure ; Neurosciences ; Phenotype ; Physiological aspects ; Point Mutation - genetics ; Point Mutation - physiology ; Protein Biosynthesis - physiology ; Protein synthesis ; Proteins</subject><ispartof>Nature neuroscience, 2007-07, Vol.10 (7), p.828-837</ispartof><rights>Springer Nature America, Inc. 2007</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</citedby><cites>FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1910$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1910$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17529987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chihara, Takahiro</creatorcontrib><creatorcontrib>Luginbuhl, David</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><title>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase ), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila , and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cercopithecus aethiops</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>COS Cells</subject><subject>Cytoplasm - metabolism</subject><subject>Dendrites - physiology</subject><subject>Disease</subject><subject>DNA - genetics</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic translation</subject><subject>Genetic Vectors</subject><subject>Glycine-tRNA Ligase - genetics</subject><subject>Glycine-tRNA Ligase - physiology</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Insects</subject><subject>Mitochondria - metabolism</subject><subject>Morphogenesis</subject><subject>Mushroom Bodies - physiology</subject><subject>Mushroom Bodies - ultrastructure</subject><subject>Mutation</subject><subject>Mutation, Missense - physiology</subject><subject>Nerve proteins</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Point Mutation - genetics</subject><subject>Point Mutation - physiology</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein synthesis</subject><subject>Proteins</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkt9rHCEQx6U0NGna_gll6UNKHzZVdx31MRz9EQgE0vZZXHWvhl29qgtJ__p6uYMjeWjwQWfmM8PXL4PQO4LPCe7E5xCIJPgFOiGsh5ZwCi_rG0veAmVwjF7nfIsx5kzIV-iYcEalFPwEqdV9iZtJ59mbRgfbzL5E8zsGm7yemk2KxfnQlKRDnnTxMTQ11Hcx1OqWt26LltpdXJr9QzoNMfm_D_QbdDTqKbu3-_sU_fr65efqe3t1_e1ydXHVGtaJ0lJwHRsABpCWaawF5s4yo6Fno5HGGN4ZisFwQS2wnmBrKR61kYMbR0r77hR93M2tiv8sLhc1-2zcNOng4pKVgF4ywrmo5Nl_SY6B8Uo-CxIJkhDBKvjhCXgbl1SdyIrynlPGpKzQ-Q5a68kpH8ZYPTX1WFetj8GNvuYviACQmMJW56dHDZUp7q6s9ZKzuvxx85jdSzUp5pzcqDbJzzrdK4LVdj_Ubj8q-H4vdRlmZw_YfiEOPuZaCmuXDn95MuofZijCGQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Chihara, Takahiro</creator><creator>Luginbuhl, David</creator><creator>Luo, Liqun</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7SS</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</title><author>Chihara, Takahiro ; Luginbuhl, David ; Luo, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-26e35b66b69d5a0a807ed5ca645fc9ccc73c206c782d65410dd20fac9beff2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cercopithecus aethiops</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>COS Cells</topic><topic>Cytoplasm - metabolism</topic><topic>Dendrites - physiology</topic><topic>Disease</topic><topic>DNA - genetics</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic translation</topic><topic>Genetic Vectors</topic><topic>Glycine-tRNA Ligase - genetics</topic><topic>Glycine-tRNA Ligase - physiology</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Insects</topic><topic>Mitochondria - metabolism</topic><topic>Morphogenesis</topic><topic>Mushroom Bodies - physiology</topic><topic>Mushroom Bodies - ultrastructure</topic><topic>Mutation</topic><topic>Mutation, Missense - physiology</topic><topic>Nerve proteins</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Point Mutation - genetics</topic><topic>Point Mutation - physiology</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein synthesis</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chihara, Takahiro</creatorcontrib><creatorcontrib>Luginbuhl, David</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chihara, Takahiro</au><au>Luginbuhl, David</au><au>Luo, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>10</volume><issue>7</issue><spage>828</spage><epage>837</epage><pages>828-837</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase ), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila , and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>17529987</pmid><doi>10.1038/nn1910</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2007-07, Vol.10 (7), p.828-837
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_864951778
source MEDLINE; SpringerLink Journals; Nature
subjects Animal Genetics and Genomics
Animals
Axons - physiology
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Cercopithecus aethiops
Cloning
Cloning, Molecular
COS Cells
Cytoplasm - metabolism
Dendrites - physiology
Disease
DNA - genetics
Drosophila
Drosophila melanogaster
Gene mutations
Genes
Genetic aspects
Genetic engineering
Genetic translation
Genetic Vectors
Glycine-tRNA Ligase - genetics
Glycine-tRNA Ligase - physiology
Humans
Identification and classification
Insects
Mitochondria - metabolism
Morphogenesis
Mushroom Bodies - physiology
Mushroom Bodies - ultrastructure
Mutation
Mutation, Missense - physiology
Nerve proteins
Neurobiology
Neurons
Neurons - physiology
Neurons - ultrastructure
Neurosciences
Phenotype
Physiological aspects
Point Mutation - genetics
Point Mutation - physiology
Protein Biosynthesis - physiology
Protein synthesis
Proteins
title Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoplasmic%20and%20mitochondrial%20protein%20translation%20in%20axonal%20and%20dendritic%20terminal%20arborization&rft.jtitle=Nature%20neuroscience&rft.au=Chihara,%20Takahiro&rft.date=2007-07-01&rft.volume=10&rft.issue=7&rft.spage=828&rft.epage=837&rft.pages=828-837&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1910&rft_dat=%3Cgale_proqu%3EA186690268%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274725599&rft_id=info:pmid/17529987&rft_galeid=A186690268&rfr_iscdi=true