Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells
Telomeres in most immortal cells 1 , 2 , 3 are maintained by the enzyme telomerase 4 , allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism 5 , 6 ; such tumors...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2002-03, Vol.30 (3), p.301-305 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 3 |
container_start_page | 301 |
container_title | Nature genetics |
container_volume | 30 |
creator | Varley, Helen Pickett, Hilda A. Foxon, Jennifer L. Reddel, Roger R. Royle, Nicola J. |
description | Telomeres in most immortal cells
1
,
2
,
3
are maintained by the enzyme telomerase
4
, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism
5
,
6
; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative
Saccharomyces cerevisiae
mutants survive, and 10% of them (type II survivors) have unstable telomeres
7
,
8
. As in human ALT+ cells
9
, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p
10
. In human cells, ALT involves copying of sequence from a donor to a recipient telomere
11
. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells. |
doi_str_mv | 10.1038/ng834 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_864951516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183421074</galeid><sourcerecordid>A183421074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-79eb54e9aaeac0933f4ad52b836a6bd740279b81bc7574c775f09c150ffa98de3</originalsourceid><addsrcrecordid>eNqN0l9r1EAQAPBFFFtrv4IERUsfUneS_ft4FG0LJwWtPgnLZjO5piS7dTcB9dO71zs4TkQlD8nO_mbYnQwhx0DPgNbqrV-pmj0ih8CZKEGCepy_qYCS0VockGcp3VEKjFH1lBwAaNBcwCH5-iEM6ObBxsLd2mjdhLH_aac--CJ0Re_zupxwCCNGLKxv16Fod6Fxnh50yhvF7TxaXyyWN4XDYUjPyZPODgmPt-8j8vn9u5vzy3J5fXF1vliWjms-lVJjwxlqa9E6quu6Y7blVaNqYUXTSkYrqRsFjZNcMicl76h2wGnXWa1arI_IyabufQzfZkyTGfu0PoH1GOZklGCaAweR5Zu_Spnbp2r5bwiKUQ6KZ_jyN3gX5ujzdU1VVUJxJSGjVxu0sgOa3nch99CtK5oF5P9WAZUsq7M_qPy0OPYueOz6HN9LON1LyGbC79PKzimZq08f_99ef9m3rzfWxZBSxM7cx3608YcBatbTZh6mLbsX27vPzYjtTm3Ha9fFlLf8CuOuOfuVfgEbDdfr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222685871</pqid></control><display><type>article</type><title>Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Varley, Helen ; Pickett, Hilda A. ; Foxon, Jennifer L. ; Reddel, Roger R. ; Royle, Nicola J.</creator><creatorcontrib>Varley, Helen ; Pickett, Hilda A. ; Foxon, Jennifer L. ; Reddel, Roger R. ; Royle, Nicola J.</creatorcontrib><description>Telomeres in most immortal cells
1
,
2
,
3
are maintained by the enzyme telomerase
4
, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism
5
,
6
; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative
Saccharomyces cerevisiae
mutants survive, and 10% of them (type II survivors) have unstable telomeres
7
,
8
. As in human ALT+ cells
9
, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p
10
. In human cells, ALT involves copying of sequence from a donor to a recipient telomere
11
. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng834</identifier><identifier>PMID: 11919561</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Line ; Chromosomes ; Cloning ; Complications and side effects ; Gene Function ; Gene mutations ; Genetic testing ; Haplotypes ; Human Genetics ; Humans ; letter ; Mutants ; Mutation ; Physiological aspects ; Polymerase Chain Reaction ; Recombination, Genetic ; Saccharomyces cerevisiae ; Telomerase ; Telomere ; Telomeres ; Tumors ; Yeast ; Yeasts</subject><ispartof>Nature genetics, 2002-03, Vol.30 (3), p.301-305</ispartof><rights>Springer Nature America, Inc. 2002</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-79eb54e9aaeac0933f4ad52b836a6bd740279b81bc7574c775f09c150ffa98de3</citedby><cites>FETCH-LOGICAL-c595t-79eb54e9aaeac0933f4ad52b836a6bd740279b81bc7574c775f09c150ffa98de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng834$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng834$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11919561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varley, Helen</creatorcontrib><creatorcontrib>Pickett, Hilda A.</creatorcontrib><creatorcontrib>Foxon, Jennifer L.</creatorcontrib><creatorcontrib>Reddel, Roger R.</creatorcontrib><creatorcontrib>Royle, Nicola J.</creatorcontrib><title>Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Telomeres in most immortal cells
1
,
2
,
3
are maintained by the enzyme telomerase
4
, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism
5
,
6
; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative
Saccharomyces cerevisiae
mutants survive, and 10% of them (type II survivors) have unstable telomeres
7
,
8
. As in human ALT+ cells
9
, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p
10
. In human cells, ALT involves copying of sequence from a donor to a recipient telomere
11
. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells.</description><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Complications and side effects</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetic testing</subject><subject>Haplotypes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>letter</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Physiological aspects</subject><subject>Polymerase Chain Reaction</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Telomerase</subject><subject>Telomere</subject><subject>Telomeres</subject><subject>Tumors</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0l9r1EAQAPBFFFtrv4IERUsfUneS_ft4FG0LJwWtPgnLZjO5piS7dTcB9dO71zs4TkQlD8nO_mbYnQwhx0DPgNbqrV-pmj0ih8CZKEGCepy_qYCS0VockGcp3VEKjFH1lBwAaNBcwCH5-iEM6ObBxsLd2mjdhLH_aac--CJ0Re_zupxwCCNGLKxv16Fod6Fxnh50yhvF7TxaXyyWN4XDYUjPyZPODgmPt-8j8vn9u5vzy3J5fXF1vliWjms-lVJjwxlqa9E6quu6Y7blVaNqYUXTSkYrqRsFjZNcMicl76h2wGnXWa1arI_IyabufQzfZkyTGfu0PoH1GOZklGCaAweR5Zu_Spnbp2r5bwiKUQ6KZ_jyN3gX5ujzdU1VVUJxJSGjVxu0sgOa3nch99CtK5oF5P9WAZUsq7M_qPy0OPYueOz6HN9LON1LyGbC79PKzimZq08f_99ef9m3rzfWxZBSxM7cx3608YcBatbTZh6mLbsX27vPzYjtTm3Ha9fFlLf8CuOuOfuVfgEbDdfr</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Varley, Helen</creator><creator>Pickett, Hilda A.</creator><creator>Foxon, Jennifer L.</creator><creator>Reddel, Roger R.</creator><creator>Royle, Nicola J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7U7</scope></search><sort><creationdate>20020301</creationdate><title>Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells</title><author>Varley, Helen ; Pickett, Hilda A. ; Foxon, Jennifer L. ; Reddel, Roger R. ; Royle, Nicola J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-79eb54e9aaeac0933f4ad52b836a6bd740279b81bc7574c775f09c150ffa98de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Complications and side effects</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetic testing</topic><topic>Haplotypes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>letter</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Physiological aspects</topic><topic>Polymerase Chain Reaction</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Telomerase</topic><topic>Telomere</topic><topic>Telomeres</topic><topic>Tumors</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varley, Helen</creatorcontrib><creatorcontrib>Pickett, Hilda A.</creatorcontrib><creatorcontrib>Foxon, Jennifer L.</creatorcontrib><creatorcontrib>Reddel, Roger R.</creatorcontrib><creatorcontrib>Royle, Nicola J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varley, Helen</au><au>Pickett, Hilda A.</au><au>Foxon, Jennifer L.</au><au>Reddel, Roger R.</au><au>Royle, Nicola J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>30</volume><issue>3</issue><spage>301</spage><epage>305</epage><pages>301-305</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Telomeres in most immortal cells
1
,
2
,
3
are maintained by the enzyme telomerase
4
, allowing cells to divide indefinitely. Some telomerase-negative tumors and immortal cell lines maintain long heterogeneous telomeres by the ALT (alternative lengthening of telomeres) mechanism
5
,
6
; such tumors are expected to be resistant to anti-telomerase drug therapies. Occasionally telomerase-negative
Saccharomyces cerevisiae
mutants survive, and 10% of them (type II survivors) have unstable telomeres
7
,
8
. As in human ALT+ cells
9
, short telomeres in yeast type II survivors lengthen abruptly; in yeast, this is dependent on the recombination proteins Rad52p and Rad50p
10
. In human cells, ALT involves copying of sequence from a donor to a recipient telomere
11
. We have characterized for the first time a class of complex telomere mutations seen only in ALT+ cells. The mutant telomeres are defined by the replacement of the progenitor telomere at a discrete point (fusion point) with a different telomere repeat array. Among 19 characterized fusion points, one occurred within the first six repeats of the telomere, indicating that these recombination-like events can occur anywhere within the telomere. One mutant telomere may have been involved in a secondary recombination-like mutation event, suggesting that these mutations are sporadic but ongoing in ALT+ cells. We also identified simple intra-allelic mutations at high frequency, which evidently contribute to telomere instability in ALT+ cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11919561</pmid><doi>10.1038/ng834</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2002-03, Vol.30 (3), p.301-305 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_864951516 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Cell Line Chromosomes Cloning Complications and side effects Gene Function Gene mutations Genetic testing Haplotypes Human Genetics Humans letter Mutants Mutation Physiological aspects Polymerase Chain Reaction Recombination, Genetic Saccharomyces cerevisiae Telomerase Telomere Telomeres Tumors Yeast Yeasts |
title | Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20characterization%20of%20inter-telomere%20and%20intra-telomere%20mutations%20in%20human%20ALT%20cells&rft.jtitle=Nature%20genetics&rft.au=Varley,%20Helen&rft.date=2002-03-01&rft.volume=30&rft.issue=3&rft.spage=301&rft.epage=305&rft.pages=301-305&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng834&rft_dat=%3Cgale_proqu%3EA183421074%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222685871&rft_id=info:pmid/11919561&rft_galeid=A183421074&rfr_iscdi=true |