Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone

Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (47), p.20275-20280
Hauptverfasser: Kolonko, Erin M., Albaugh, Brittany N., Lindner, Scott E., Chen, Yuanyuan, Satyshur, Kenneth A., Arnold, Kevin M., Kaufman, Paul D., Keck, James L., Denu, John M., Kornberg, Roger D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20280
container_issue 47
container_start_page 20275
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Kolonko, Erin M.
Albaugh, Brittany N.
Lindner, Scott E.
Chen, Yuanyuan
Satyshur, Kenneth A.
Arnold, Kevin M.
Kaufman, Paul D.
Keck, James L.
Denu, John M.
Kornberg, Roger D.
description Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75. The rate-determing step of the activated complex is the transfer of the acetyl group from acetyl CoA to the acceptor lysine residue. Vps75 stimulates catalysis (>250-fold), not by contributing a catalytic base, but by stabilizing the catalytically active conformation of Rtt109. To provide structural insight into the functional complex, we produced a molecular model of Rtt109-Vps75 based on X-ray diffraction of crystals of the complex. This model reveals distinct negative electrostatic surfaces on an Rtt109 molecule that interface with complementary electropositive ends of a symmetrical Vps75 dimer. Rtt109 variants with interface point substitutions lack the ability to be fully activated by Vps75, and one such variant displayed impaired Vps75-dependent histone acetylation functions in yeast, yet these variants showed no adverse effect on Asf1-dependent Rtt109 activities in vitro and in vivo. Finally, we provide evidence for a molecular model in which a 1:2 complex of Rtt109-Vps75 acetylates a heterodimer of H3-H4. The activation mechanism of Rtt109-Vps75 provides a valuable framework for understanding the molecular regulation of HATs within multisubunit complexes.
doi_str_mv 10.1073/pnas.1009860107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_864949735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25756688</jstor_id><sourcerecordid>25756688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-c57d604d0e123c45086ad4743e71d416da160adaacd338e84e0914b4a312301b3</originalsourceid><addsrcrecordid>eNqFkkFrGzEQhUVpaNy0555allx62mS00kraSyGYNgkEAqE9i7FWrtesV44kB_zvM4tdO80l6KBh9OlpZp4Y-8LhgoMWl-sBE0XQGAWUeMcmHBpeKtnAezYBqHRpZCVP2ceUlkBcbeADO6041Jr4CbufYsZ-mztXoMvdE-YuDEWYF4su5TB4yvq87XPEIc19xOSLh5zpkWK2LfBAuQWufaToEzuZY5_85_1-xv78-vl7elPe3V_fTq_uSicbk0tX61aBbMHzSjhZg1HYSi2F17yVXLXIFWCL6FohjDfSU1tyJlEQD3wmztiPne56M1v51vmBSuztOnYrjFsbsLP_nwzdwv4NT7ZqGqUBSOD7XiCGx41P2a665Hzf4-DDJllDM5SNFvXbJK-4kFCPmuevyGXYxIHmQJAUqqFF0OUOcjGkFP38UDQHO5pqR1Pt0VS68e1lrwf-n4sEFHtgvHmU01ZqW9EnGJv4ukOWZFg8StS6VsoY8QweJbFZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814369696</pqid></control><display><type>article</type><title>Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kolonko, Erin M. ; Albaugh, Brittany N. ; Lindner, Scott E. ; Chen, Yuanyuan ; Satyshur, Kenneth A. ; Arnold, Kevin M. ; Kaufman, Paul D. ; Keck, James L. ; Denu, John M. ; Kornberg, Roger D.</creator><creatorcontrib>Kolonko, Erin M. ; Albaugh, Brittany N. ; Lindner, Scott E. ; Chen, Yuanyuan ; Satyshur, Kenneth A. ; Arnold, Kevin M. ; Kaufman, Paul D. ; Keck, James L. ; Denu, John M. ; Kornberg, Roger D.</creatorcontrib><description>Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75. The rate-determing step of the activated complex is the transfer of the acetyl group from acetyl CoA to the acceptor lysine residue. Vps75 stimulates catalysis (&gt;250-fold), not by contributing a catalytic base, but by stabilizing the catalytically active conformation of Rtt109. To provide structural insight into the functional complex, we produced a molecular model of Rtt109-Vps75 based on X-ray diffraction of crystals of the complex. This model reveals distinct negative electrostatic surfaces on an Rtt109 molecule that interface with complementary electropositive ends of a symmetrical Vps75 dimer. Rtt109 variants with interface point substitutions lack the ability to be fully activated by Vps75, and one such variant displayed impaired Vps75-dependent histone acetylation functions in yeast, yet these variants showed no adverse effect on Asf1-dependent Rtt109 activities in vitro and in vivo. Finally, we provide evidence for a molecular model in which a 1:2 complex of Rtt109-Vps75 acetylates a heterodimer of H3-H4. The activation mechanism of Rtt109-Vps75 provides a valuable framework for understanding the molecular regulation of HATs within multisubunit complexes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1009860107</identifier><identifier>PMID: 21057107</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetylation ; Biochemical mechanisms ; Biochemistry ; Biological Sciences ; Blotting, Western ; Catalysis ; Cell Cycle Proteins - metabolism ; Chaperones ; Conformation ; Crystallization ; Crystals ; Dimerization ; Dimers ; Electrophoresis, Polyacrylamide Gel ; Electrostatics ; Enzyme kinetics ; Enzymes ; Genetic analysis ; Histone acetyltransferase ; Histone Acetyltransferases - metabolism ; Histone chaperones ; Histones ; Histones - metabolism ; Kinetics ; Lysine ; Mass Spectrometry ; Models, Molecular ; Molecular Chaperones - metabolism ; Molecular modelling ; Molecular structure ; Proteins ; Saccharomyces cerevisiae Proteins - metabolism ; Side effects ; Static Electricity ; Substrate specificity ; X-Ray Diffraction ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (47), p.20275-20280</ispartof><rights>Copyright National Academy of Sciences Nov 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-c57d604d0e123c45086ad4743e71d416da160adaacd338e84e0914b4a312301b3</citedby><cites>FETCH-LOGICAL-c498t-c57d604d0e123c45086ad4743e71d416da160adaacd338e84e0914b4a312301b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25756688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25756688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21057107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolonko, Erin M.</creatorcontrib><creatorcontrib>Albaugh, Brittany N.</creatorcontrib><creatorcontrib>Lindner, Scott E.</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Satyshur, Kenneth A.</creatorcontrib><creatorcontrib>Arnold, Kevin M.</creatorcontrib><creatorcontrib>Kaufman, Paul D.</creatorcontrib><creatorcontrib>Keck, James L.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><creatorcontrib>Kornberg, Roger D.</creatorcontrib><title>Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75. The rate-determing step of the activated complex is the transfer of the acetyl group from acetyl CoA to the acceptor lysine residue. Vps75 stimulates catalysis (&gt;250-fold), not by contributing a catalytic base, but by stabilizing the catalytically active conformation of Rtt109. To provide structural insight into the functional complex, we produced a molecular model of Rtt109-Vps75 based on X-ray diffraction of crystals of the complex. This model reveals distinct negative electrostatic surfaces on an Rtt109 molecule that interface with complementary electropositive ends of a symmetrical Vps75 dimer. Rtt109 variants with interface point substitutions lack the ability to be fully activated by Vps75, and one such variant displayed impaired Vps75-dependent histone acetylation functions in yeast, yet these variants showed no adverse effect on Asf1-dependent Rtt109 activities in vitro and in vivo. Finally, we provide evidence for a molecular model in which a 1:2 complex of Rtt109-Vps75 acetylates a heterodimer of H3-H4. The activation mechanism of Rtt109-Vps75 provides a valuable framework for understanding the molecular regulation of HATs within multisubunit complexes.</description><subject>Acetylation</subject><subject>Biochemical mechanisms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Catalysis</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chaperones</subject><subject>Conformation</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Electrostatics</subject><subject>Enzyme kinetics</subject><subject>Enzymes</subject><subject>Genetic analysis</subject><subject>Histone acetyltransferase</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histone chaperones</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Kinetics</subject><subject>Lysine</subject><subject>Mass Spectrometry</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular modelling</subject><subject>Molecular structure</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Side effects</subject><subject>Static Electricity</subject><subject>Substrate specificity</subject><subject>X-Ray Diffraction</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFrGzEQhUVpaNy0555allx62mS00kraSyGYNgkEAqE9i7FWrtesV44kB_zvM4tdO80l6KBh9OlpZp4Y-8LhgoMWl-sBE0XQGAWUeMcmHBpeKtnAezYBqHRpZCVP2ceUlkBcbeADO6041Jr4CbufYsZ-mztXoMvdE-YuDEWYF4su5TB4yvq87XPEIc19xOSLh5zpkWK2LfBAuQWufaToEzuZY5_85_1-xv78-vl7elPe3V_fTq_uSicbk0tX61aBbMHzSjhZg1HYSi2F17yVXLXIFWCL6FohjDfSU1tyJlEQD3wmztiPne56M1v51vmBSuztOnYrjFsbsLP_nwzdwv4NT7ZqGqUBSOD7XiCGx41P2a665Hzf4-DDJllDM5SNFvXbJK-4kFCPmuevyGXYxIHmQJAUqqFF0OUOcjGkFP38UDQHO5pqR1Pt0VS68e1lrwf-n4sEFHtgvHmU01ZqW9EnGJv4ukOWZFg8StS6VsoY8QweJbFZ</recordid><startdate>20101123</startdate><enddate>20101123</enddate><creator>Kolonko, Erin M.</creator><creator>Albaugh, Brittany N.</creator><creator>Lindner, Scott E.</creator><creator>Chen, Yuanyuan</creator><creator>Satyshur, Kenneth A.</creator><creator>Arnold, Kevin M.</creator><creator>Kaufman, Paul D.</creator><creator>Keck, James L.</creator><creator>Denu, John M.</creator><creator>Kornberg, Roger D.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101123</creationdate><title>Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone</title><author>Kolonko, Erin M. ; Albaugh, Brittany N. ; Lindner, Scott E. ; Chen, Yuanyuan ; Satyshur, Kenneth A. ; Arnold, Kevin M. ; Kaufman, Paul D. ; Keck, James L. ; Denu, John M. ; Kornberg, Roger D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-c57d604d0e123c45086ad4743e71d416da160adaacd338e84e0914b4a312301b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetylation</topic><topic>Biochemical mechanisms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Catalysis</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chaperones</topic><topic>Conformation</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Electrostatics</topic><topic>Enzyme kinetics</topic><topic>Enzymes</topic><topic>Genetic analysis</topic><topic>Histone acetyltransferase</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histone chaperones</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Kinetics</topic><topic>Lysine</topic><topic>Mass Spectrometry</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular modelling</topic><topic>Molecular structure</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Side effects</topic><topic>Static Electricity</topic><topic>Substrate specificity</topic><topic>X-Ray Diffraction</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolonko, Erin M.</creatorcontrib><creatorcontrib>Albaugh, Brittany N.</creatorcontrib><creatorcontrib>Lindner, Scott E.</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Satyshur, Kenneth A.</creatorcontrib><creatorcontrib>Arnold, Kevin M.</creatorcontrib><creatorcontrib>Kaufman, Paul D.</creatorcontrib><creatorcontrib>Keck, James L.</creatorcontrib><creatorcontrib>Denu, John M.</creatorcontrib><creatorcontrib>Kornberg, Roger D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolonko, Erin M.</au><au>Albaugh, Brittany N.</au><au>Lindner, Scott E.</au><au>Chen, Yuanyuan</au><au>Satyshur, Kenneth A.</au><au>Arnold, Kevin M.</au><au>Kaufman, Paul D.</au><au>Keck, James L.</au><au>Denu, John M.</au><au>Kornberg, Roger D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-23</date><risdate>2010</risdate><volume>107</volume><issue>47</issue><spage>20275</spage><epage>20280</epage><pages>20275-20280</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75. The rate-determing step of the activated complex is the transfer of the acetyl group from acetyl CoA to the acceptor lysine residue. Vps75 stimulates catalysis (&gt;250-fold), not by contributing a catalytic base, but by stabilizing the catalytically active conformation of Rtt109. To provide structural insight into the functional complex, we produced a molecular model of Rtt109-Vps75 based on X-ray diffraction of crystals of the complex. This model reveals distinct negative electrostatic surfaces on an Rtt109 molecule that interface with complementary electropositive ends of a symmetrical Vps75 dimer. Rtt109 variants with interface point substitutions lack the ability to be fully activated by Vps75, and one such variant displayed impaired Vps75-dependent histone acetylation functions in yeast, yet these variants showed no adverse effect on Asf1-dependent Rtt109 activities in vitro and in vivo. Finally, we provide evidence for a molecular model in which a 1:2 complex of Rtt109-Vps75 acetylates a heterodimer of H3-H4. The activation mechanism of Rtt109-Vps75 provides a valuable framework for understanding the molecular regulation of HATs within multisubunit complexes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21057107</pmid><doi>10.1073/pnas.1009860107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (47), p.20275-20280
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_864949735
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acetylation
Biochemical mechanisms
Biochemistry
Biological Sciences
Blotting, Western
Catalysis
Cell Cycle Proteins - metabolism
Chaperones
Conformation
Crystallization
Crystals
Dimerization
Dimers
Electrophoresis, Polyacrylamide Gel
Electrostatics
Enzyme kinetics
Enzymes
Genetic analysis
Histone acetyltransferase
Histone Acetyltransferases - metabolism
Histone chaperones
Histones
Histones - metabolism
Kinetics
Lysine
Mass Spectrometry
Models, Molecular
Molecular Chaperones - metabolism
Molecular modelling
Molecular structure
Proteins
Saccharomyces cerevisiae Proteins - metabolism
Side effects
Static Electricity
Substrate specificity
X-Ray Diffraction
Yeasts
title Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20activation%20of%20histone%20acetyltransferase%20Rtt109%20by%20a%20histone%20chaperone&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kolonko,%20Erin%20M.&rft.date=2010-11-23&rft.volume=107&rft.issue=47&rft.spage=20275&rft.epage=20280&rft.pages=20275-20280&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1009860107&rft_dat=%3Cjstor_proqu%3E25756688%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=814369696&rft_id=info:pmid/21057107&rft_jstor_id=25756688&rfr_iscdi=true