Excited states dynamics under high pressure in lanthanide-doped solids
Emission related to rare earth ions in solids takes place usually due to 4f n →4f n and 4f n−1 5d 1→4f n internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities i...
Gespeichert in:
Veröffentlicht in: | Journal of luminescence 2011-03, Vol.131 (3), p.433-437 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 3 |
container_start_page | 433 |
container_title | Journal of luminescence |
container_volume | 131 |
creator | Grinberg, Marek |
description | Emission related to rare earth ions in solids takes place usually due to 4f
n
→4f
n
and 4f
n−1
5d
1→4f
n
internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at the excited state and the hole at the ground state of impurity.
The latest results on high pressure investigations of luminescence related to Pr
3+ and Eu
2+ in different lattices are briefly reviewed. The influence of pressure on anomalous luminescence and 4f
n−1
5d
1→4f
n
luminescence in BaSrF
2:Eu
2+ and LiBaF
3:Eu
2+ systems and Pr
3+ 4f
n
→4f
n
emission quenching is presented and discussed. A theoretical model describing the impurity-trapped exciton as a system where a hole is localized at the impurity and an electron is captured by Coulomb potential at Rydberg-like states is developed. The results show the importance of local lattice relaxation for the creation of stable impurity-trapped exciton states. The ligands shifts create a potential barrier that controls the effect of mixing between the Rydberg-like electron and localized electron wave functions. |
doi_str_mv | 10.1016/j.jlumin.2010.10.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864440662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022231310004758</els_id><sourcerecordid>864440662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fad1a2ab3bc0528226d0e5f35b6c68da12baf61ed59e0fa4ca26399c3db77bb03</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsH78Bx5yEU-psx_dJBdBSqtCwYuel83uxG5Jk7qTiP3vTWzx6Gng8d68mR9jNxymHLi-30w3db8NzVTArzQFJU_YhOeZSLM8l6dsAiBEKiSX5-yCaAMAssiLCVsuvl3o0CfU2Q4p8fvGboOjpG88xmQdPtbJLiJRHzEJTVLbplvbJnhMfbsbc20dPF2xs8rWhNfHecnel4u3-XO6en16mT-uUqek6tLKem6FLWXpYCZyIbQHnFVyVmqnc2-5KG2lOfpZgVBZ5azQsiic9GWWlSXIS3Z32LuL7WeP1JltIIf1cBa2PZlcK6VAazE41cHpYksUsTK7GLY27g0HM1IzG3OgZkZqozpQG2K3xwJLztZVtI0L9JcVGSjI-HjIw8GHw7dfAaMhF7Bx6ENE1xnfhv-LfgDf1YXb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864440662</pqid></control><display><type>article</type><title>Excited states dynamics under high pressure in lanthanide-doped solids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Grinberg, Marek</creator><creatorcontrib>Grinberg, Marek</creatorcontrib><description>Emission related to rare earth ions in solids takes place usually due to 4f
n
→4f
n
and 4f
n−1
5d
1→4f
n
internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at the excited state and the hole at the ground state of impurity.
The latest results on high pressure investigations of luminescence related to Pr
3+ and Eu
2+ in different lattices are briefly reviewed. The influence of pressure on anomalous luminescence and 4f
n−1
5d
1→4f
n
luminescence in BaSrF
2:Eu
2+ and LiBaF
3:Eu
2+ systems and Pr
3+ 4f
n
→4f
n
emission quenching is presented and discussed. A theoretical model describing the impurity-trapped exciton as a system where a hole is localized at the impurity and an electron is captured by Coulomb potential at Rydberg-like states is developed. The results show the importance of local lattice relaxation for the creation of stable impurity-trapped exciton states. The ligands shifts create a potential barrier that controls the effect of mixing between the Rydberg-like electron and localized electron wave functions.</description><identifier>ISSN: 0022-2313</identifier><identifier>EISSN: 1872-7883</identifier><identifier>DOI: 10.1016/j.jlumin.2010.10.043</identifier><identifier>CODEN: JLUMA8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Charge transfer transition ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states ; Emission ; Eu 2 ; Exact sciences and technology ; Excitation ; Excitons and related phenomena ; Impurities ; Impurity-trapped exciton ; Lattice relaxation ; Lattices ; Ligands ; Luminescence ; Mathematical models ; Physics ; Pr 3 ; Quenching ; Rare earth metals ; Self-trapped exciton</subject><ispartof>Journal of luminescence, 2011-03, Vol.131 (3), p.433-437</ispartof><rights>2010 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fad1a2ab3bc0528226d0e5f35b6c68da12baf61ed59e0fa4ca26399c3db77bb03</citedby><cites>FETCH-LOGICAL-c434t-fad1a2ab3bc0528226d0e5f35b6c68da12baf61ed59e0fa4ca26399c3db77bb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jlumin.2010.10.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27040710$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grinberg, Marek</creatorcontrib><title>Excited states dynamics under high pressure in lanthanide-doped solids</title><title>Journal of luminescence</title><description>Emission related to rare earth ions in solids takes place usually due to 4f
n
→4f
n
and 4f
n−1
5d
1→4f
n
internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at the excited state and the hole at the ground state of impurity.
The latest results on high pressure investigations of luminescence related to Pr
3+ and Eu
2+ in different lattices are briefly reviewed. The influence of pressure on anomalous luminescence and 4f
n−1
5d
1→4f
n
luminescence in BaSrF
2:Eu
2+ and LiBaF
3:Eu
2+ systems and Pr
3+ 4f
n
→4f
n
emission quenching is presented and discussed. A theoretical model describing the impurity-trapped exciton as a system where a hole is localized at the impurity and an electron is captured by Coulomb potential at Rydberg-like states is developed. The results show the importance of local lattice relaxation for the creation of stable impurity-trapped exciton states. The ligands shifts create a potential barrier that controls the effect of mixing between the Rydberg-like electron and localized electron wave functions.</description><subject>Charge transfer transition</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states</subject><subject>Emission</subject><subject>Eu 2</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Excitons and related phenomena</subject><subject>Impurities</subject><subject>Impurity-trapped exciton</subject><subject>Lattice relaxation</subject><subject>Lattices</subject><subject>Ligands</subject><subject>Luminescence</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Pr 3</subject><subject>Quenching</subject><subject>Rare earth metals</subject><subject>Self-trapped exciton</subject><issn>0022-2313</issn><issn>1872-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsH78Bx5yEU-psx_dJBdBSqtCwYuel83uxG5Jk7qTiP3vTWzx6Gng8d68mR9jNxymHLi-30w3db8NzVTArzQFJU_YhOeZSLM8l6dsAiBEKiSX5-yCaAMAssiLCVsuvl3o0CfU2Q4p8fvGboOjpG88xmQdPtbJLiJRHzEJTVLbplvbJnhMfbsbc20dPF2xs8rWhNfHecnel4u3-XO6en16mT-uUqek6tLKem6FLWXpYCZyIbQHnFVyVmqnc2-5KG2lOfpZgVBZ5azQsiic9GWWlSXIS3Z32LuL7WeP1JltIIf1cBa2PZlcK6VAazE41cHpYksUsTK7GLY27g0HM1IzG3OgZkZqozpQG2K3xwJLztZVtI0L9JcVGSjI-HjIw8GHw7dfAaMhF7Bx6ENE1xnfhv-LfgDf1YXb</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Grinberg, Marek</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Excited states dynamics under high pressure in lanthanide-doped solids</title><author>Grinberg, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fad1a2ab3bc0528226d0e5f35b6c68da12baf61ed59e0fa4ca26399c3db77bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Charge transfer transition</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states</topic><topic>Emission</topic><topic>Eu 2</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Excitons and related phenomena</topic><topic>Impurities</topic><topic>Impurity-trapped exciton</topic><topic>Lattice relaxation</topic><topic>Lattices</topic><topic>Ligands</topic><topic>Luminescence</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Pr 3</topic><topic>Quenching</topic><topic>Rare earth metals</topic><topic>Self-trapped exciton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinberg, Marek</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of luminescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinberg, Marek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited states dynamics under high pressure in lanthanide-doped solids</atitle><jtitle>Journal of luminescence</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>131</volume><issue>3</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>0022-2313</issn><eissn>1872-7883</eissn><coden>JLUMA8</coden><abstract>Emission related to rare earth ions in solids takes place usually due to 4f
n
→4f
n
and 4f
n−1
5d
1→4f
n
internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at the excited state and the hole at the ground state of impurity.
The latest results on high pressure investigations of luminescence related to Pr
3+ and Eu
2+ in different lattices are briefly reviewed. The influence of pressure on anomalous luminescence and 4f
n−1
5d
1→4f
n
luminescence in BaSrF
2:Eu
2+ and LiBaF
3:Eu
2+ systems and Pr
3+ 4f
n
→4f
n
emission quenching is presented and discussed. A theoretical model describing the impurity-trapped exciton as a system where a hole is localized at the impurity and an electron is captured by Coulomb potential at Rydberg-like states is developed. The results show the importance of local lattice relaxation for the creation of stable impurity-trapped exciton states. The ligands shifts create a potential barrier that controls the effect of mixing between the Rydberg-like electron and localized electron wave functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jlumin.2010.10.043</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2313 |
ispartof | Journal of luminescence, 2011-03, Vol.131 (3), p.433-437 |
issn | 0022-2313 1872-7883 |
language | eng |
recordid | cdi_proquest_miscellaneous_864440662 |
source | Access via ScienceDirect (Elsevier) |
subjects | Charge transfer transition Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron states Emission Eu 2 Exact sciences and technology Excitation Excitons and related phenomena Impurities Impurity-trapped exciton Lattice relaxation Lattices Ligands Luminescence Mathematical models Physics Pr 3 Quenching Rare earth metals Self-trapped exciton |
title | Excited states dynamics under high pressure in lanthanide-doped solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited%20states%20dynamics%20under%20high%20pressure%20in%20lanthanide-doped%20solids&rft.jtitle=Journal%20of%20luminescence&rft.au=Grinberg,%20Marek&rft.date=2011-03-01&rft.volume=131&rft.issue=3&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=0022-2313&rft.eissn=1872-7883&rft.coden=JLUMA8&rft_id=info:doi/10.1016/j.jlumin.2010.10.043&rft_dat=%3Cproquest_cross%3E864440662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864440662&rft_id=info:pmid/&rft_els_id=S0022231310004758&rfr_iscdi=true |