An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater

A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2011-06, Vol.88 (6), p.2157-2167
Hauptverfasser: Dhiman, Prashant, Thakur, N.S., Kumar, Anoop, Singh, Satyender
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 6
container_start_page 2157
container_title Applied energy
container_volume 88
creator Dhiman, Prashant
Thakur, N.S.
Kumar, Anoop
Singh, Satyender
description A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.
doi_str_mv 10.1016/j.apenergy.2010.12.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864438497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261910005532</els_id><sourcerecordid>864438497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvhL4AvCC5ZbMfxx42qghZpJQ7Qs-V1Jl1vnTjY6aL990yU0iMc3tixnxmN9VTVW0a3jDL56bh1E4yQ785bTpdDvqVN86zaMK14bRjTz6sNbaisuWTmZfWqlCOllDNON9X95Ujc6OJ5Dt5FMqQOIpkTmTJ0wc9kPsCSPODlBLlPuBs9kNQTR8Z0Qnpy2cWImz6m3_jn76Eje0xJ0WXiQiYHcDPk19WL3sUCbx7Xi-r265efVzf17vv1t6vLXe1bSufaGyO08Vq1FKTpTAu0lSDU3nfcCOVaDUJy2ew9N46abu-pkYgZIaSQnW4uqg9r3ymnXw9QZjuE4iFGN0J6KFZLIRotjELy4z9JJhXjRkvVICpX1OdUSobeTjkMLp8to3bxYI_2rwe7eLCMW_SAhbu1MMME_qkKANy08PZkG6c1fs4YrGS4BIzETMsRa5XlOIo9zAO2e_84sitorM-oI5SntrwxtOVKIvdu5XqXrLvLyNz-wO4S1VOh2mWwzysB6OIUINviA6DcLmTws-1S-N_b_gC5MsOu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671298673</pqid></control><display><type>article</type><title>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Dhiman, Prashant ; Thakur, N.S. ; Kumar, Anoop ; Singh, Satyender</creator><creatorcontrib>Dhiman, Prashant ; Thakur, N.S. ; Kumar, Anoop ; Singh, Satyender</creatorcontrib><description>A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2010.12.033</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accuracy ; air ; Air heaters ; Applied sciences ; Channels ; Devices using thermal energy ; Effective efficiency ; Energy ; energy balance ; Energy. Thermal use of fuels ; equations ; Equipments, installations and applications ; Exact sciences and technology ; flow rate ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Heating, air conditioning and ventilation ; mass flow ; Mass flow rate ; Material and general technologies ; Mathematical analysis ; Mathematical models ; Natural energy ; Packed bed ; Packed bed Parallel flow Porosity Thermal power Effective efficiency ; Parallel flow ; Porosity ; Solar energy ; Solar thermal conversion ; Space heating. Hot water ; temperature ; Thermal efficiency ; Thermal power</subject><ispartof>Applied energy, 2011-06, Vol.88 (6), p.2157-2167</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</citedby><cites>FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261910005532$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23905276$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a6_3ap_3a2157-2167.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhiman, Prashant</creatorcontrib><creatorcontrib>Thakur, N.S.</creatorcontrib><creatorcontrib>Kumar, Anoop</creatorcontrib><creatorcontrib>Singh, Satyender</creatorcontrib><title>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</title><title>Applied energy</title><description>A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.</description><subject>Accuracy</subject><subject>air</subject><subject>Air heaters</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Devices using thermal energy</subject><subject>Effective efficiency</subject><subject>Energy</subject><subject>energy balance</subject><subject>Energy. Thermal use of fuels</subject><subject>equations</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>flow rate</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Heating, air conditioning and ventilation</subject><subject>mass flow</subject><subject>Mass flow rate</subject><subject>Material and general technologies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Natural energy</subject><subject>Packed bed</subject><subject>Packed bed Parallel flow Porosity Thermal power Effective efficiency</subject><subject>Parallel flow</subject><subject>Porosity</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Space heating. Hot water</subject><subject>temperature</subject><subject>Thermal efficiency</subject><subject>Thermal power</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU1v1DAQhiMEEkvhL4AvCC5ZbMfxx42qghZpJQ7Qs-V1Jl1vnTjY6aL990yU0iMc3tixnxmN9VTVW0a3jDL56bh1E4yQ785bTpdDvqVN86zaMK14bRjTz6sNbaisuWTmZfWqlCOllDNON9X95Ujc6OJ5Dt5FMqQOIpkTmTJ0wc9kPsCSPODlBLlPuBs9kNQTR8Z0Qnpy2cWImz6m3_jn76Eje0xJ0WXiQiYHcDPk19WL3sUCbx7Xi-r265efVzf17vv1t6vLXe1bSufaGyO08Vq1FKTpTAu0lSDU3nfcCOVaDUJy2ew9N46abu-pkYgZIaSQnW4uqg9r3ymnXw9QZjuE4iFGN0J6KFZLIRotjELy4z9JJhXjRkvVICpX1OdUSobeTjkMLp8to3bxYI_2rwe7eLCMW_SAhbu1MMME_qkKANy08PZkG6c1fs4YrGS4BIzETMsRa5XlOIo9zAO2e_84sitorM-oI5SntrwxtOVKIvdu5XqXrLvLyNz-wO4S1VOh2mWwzysB6OIUINviA6DcLmTws-1S-N_b_gC5MsOu</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Dhiman, Prashant</creator><creator>Thakur, N.S.</creator><creator>Kumar, Anoop</creator><creator>Singh, Satyender</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110601</creationdate><title>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</title><author>Dhiman, Prashant ; Thakur, N.S. ; Kumar, Anoop ; Singh, Satyender</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>air</topic><topic>Air heaters</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Devices using thermal energy</topic><topic>Effective efficiency</topic><topic>Energy</topic><topic>energy balance</topic><topic>Energy. Thermal use of fuels</topic><topic>equations</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>flow rate</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Heating, air conditioning and ventilation</topic><topic>mass flow</topic><topic>Mass flow rate</topic><topic>Material and general technologies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Natural energy</topic><topic>Packed bed</topic><topic>Packed bed Parallel flow Porosity Thermal power Effective efficiency</topic><topic>Parallel flow</topic><topic>Porosity</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Space heating. Hot water</topic><topic>temperature</topic><topic>Thermal efficiency</topic><topic>Thermal power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Prashant</creatorcontrib><creatorcontrib>Thakur, N.S.</creatorcontrib><creatorcontrib>Kumar, Anoop</creatorcontrib><creatorcontrib>Singh, Satyender</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Prashant</au><au>Thakur, N.S.</au><au>Kumar, Anoop</au><au>Singh, Satyender</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</atitle><jtitle>Applied energy</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>88</volume><issue>6</issue><spage>2157</spage><epage>2167</epage><pages>2157-2167</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2010.12.033</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2011-06, Vol.88 (6), p.2157-2167
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_864438497
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Accuracy
air
Air heaters
Applied sciences
Channels
Devices using thermal energy
Effective efficiency
Energy
energy balance
Energy. Thermal use of fuels
equations
Equipments, installations and applications
Exact sciences and technology
flow rate
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Heating, air conditioning and ventilation
mass flow
Mass flow rate
Material and general technologies
Mathematical analysis
Mathematical models
Natural energy
Packed bed
Packed bed Parallel flow Porosity Thermal power Effective efficiency
Parallel flow
Porosity
Solar energy
Solar thermal conversion
Space heating. Hot water
temperature
Thermal efficiency
Thermal power
title An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20to%20predict%20the%20thermal%20performance%20of%20a%20novel%20parallel%20flow%20packed%20bed%20solar%20air%20heater&rft.jtitle=Applied%20energy&rft.au=Dhiman,%20Prashant&rft.date=2011-06-01&rft.volume=88&rft.issue=6&rft.spage=2157&rft.epage=2167&rft.pages=2157-2167&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2010.12.033&rft_dat=%3Cproquest_cross%3E864438497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671298673&rft_id=info:pmid/&rft_els_id=S0306261910005532&rfr_iscdi=true