An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater
A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics o...
Gespeichert in:
Veröffentlicht in: | Applied energy 2011-06, Vol.88 (6), p.2157-2167 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2167 |
---|---|
container_issue | 6 |
container_start_page | 2157 |
container_title | Applied energy |
container_volume | 88 |
creator | Dhiman, Prashant Thakur, N.S. Kumar, Anoop Singh, Satyender |
description | A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater. |
doi_str_mv | 10.1016/j.apenergy.2010.12.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864438497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261910005532</els_id><sourcerecordid>864438497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvhL4AvCC5ZbMfxx42qghZpJQ7Qs-V1Jl1vnTjY6aL990yU0iMc3tixnxmN9VTVW0a3jDL56bh1E4yQ785bTpdDvqVN86zaMK14bRjTz6sNbaisuWTmZfWqlCOllDNON9X95Ujc6OJ5Dt5FMqQOIpkTmTJ0wc9kPsCSPODlBLlPuBs9kNQTR8Z0Qnpy2cWImz6m3_jn76Eje0xJ0WXiQiYHcDPk19WL3sUCbx7Xi-r265efVzf17vv1t6vLXe1bSufaGyO08Vq1FKTpTAu0lSDU3nfcCOVaDUJy2ew9N46abu-pkYgZIaSQnW4uqg9r3ymnXw9QZjuE4iFGN0J6KFZLIRotjELy4z9JJhXjRkvVICpX1OdUSobeTjkMLp8to3bxYI_2rwe7eLCMW_SAhbu1MMME_qkKANy08PZkG6c1fs4YrGS4BIzETMsRa5XlOIo9zAO2e_84sitorM-oI5SntrwxtOVKIvdu5XqXrLvLyNz-wO4S1VOh2mWwzysB6OIUINviA6DcLmTws-1S-N_b_gC5MsOu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671298673</pqid></control><display><type>article</type><title>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Dhiman, Prashant ; Thakur, N.S. ; Kumar, Anoop ; Singh, Satyender</creator><creatorcontrib>Dhiman, Prashant ; Thakur, N.S. ; Kumar, Anoop ; Singh, Satyender</creatorcontrib><description>A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2010.12.033</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accuracy ; air ; Air heaters ; Applied sciences ; Channels ; Devices using thermal energy ; Effective efficiency ; Energy ; energy balance ; Energy. Thermal use of fuels ; equations ; Equipments, installations and applications ; Exact sciences and technology ; flow rate ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Heating, air conditioning and ventilation ; mass flow ; Mass flow rate ; Material and general technologies ; Mathematical analysis ; Mathematical models ; Natural energy ; Packed bed ; Packed bed Parallel flow Porosity Thermal power Effective efficiency ; Parallel flow ; Porosity ; Solar energy ; Solar thermal conversion ; Space heating. Hot water ; temperature ; Thermal efficiency ; Thermal power</subject><ispartof>Applied energy, 2011-06, Vol.88 (6), p.2157-2167</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</citedby><cites>FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261910005532$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23905276$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a88_3ay_3a2011_3ai_3a6_3ap_3a2157-2167.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhiman, Prashant</creatorcontrib><creatorcontrib>Thakur, N.S.</creatorcontrib><creatorcontrib>Kumar, Anoop</creatorcontrib><creatorcontrib>Singh, Satyender</creatorcontrib><title>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</title><title>Applied energy</title><description>A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.</description><subject>Accuracy</subject><subject>air</subject><subject>Air heaters</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Devices using thermal energy</subject><subject>Effective efficiency</subject><subject>Energy</subject><subject>energy balance</subject><subject>Energy. Thermal use of fuels</subject><subject>equations</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>flow rate</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Heating, air conditioning and ventilation</subject><subject>mass flow</subject><subject>Mass flow rate</subject><subject>Material and general technologies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Natural energy</subject><subject>Packed bed</subject><subject>Packed bed Parallel flow Porosity Thermal power Effective efficiency</subject><subject>Parallel flow</subject><subject>Porosity</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Space heating. Hot water</subject><subject>temperature</subject><subject>Thermal efficiency</subject><subject>Thermal power</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU1v1DAQhiMEEkvhL4AvCC5ZbMfxx42qghZpJQ7Qs-V1Jl1vnTjY6aL990yU0iMc3tixnxmN9VTVW0a3jDL56bh1E4yQ785bTpdDvqVN86zaMK14bRjTz6sNbaisuWTmZfWqlCOllDNON9X95Ujc6OJ5Dt5FMqQOIpkTmTJ0wc9kPsCSPODlBLlPuBs9kNQTR8Z0Qnpy2cWImz6m3_jn76Eje0xJ0WXiQiYHcDPk19WL3sUCbx7Xi-r265efVzf17vv1t6vLXe1bSufaGyO08Vq1FKTpTAu0lSDU3nfcCOVaDUJy2ew9N46abu-pkYgZIaSQnW4uqg9r3ymnXw9QZjuE4iFGN0J6KFZLIRotjELy4z9JJhXjRkvVICpX1OdUSobeTjkMLp8to3bxYI_2rwe7eLCMW_SAhbu1MMME_qkKANy08PZkG6c1fs4YrGS4BIzETMsRa5XlOIo9zAO2e_84sitorM-oI5SntrwxtOVKIvdu5XqXrLvLyNz-wO4S1VOh2mWwzysB6OIUINviA6DcLmTws-1S-N_b_gC5MsOu</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Dhiman, Prashant</creator><creator>Thakur, N.S.</creator><creator>Kumar, Anoop</creator><creator>Singh, Satyender</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110601</creationdate><title>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</title><author>Dhiman, Prashant ; Thakur, N.S. ; Kumar, Anoop ; Singh, Satyender</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-c99489c8750e69d95e056e47bcd2947a58e46263bc29a09dbc096d95944646d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>air</topic><topic>Air heaters</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Devices using thermal energy</topic><topic>Effective efficiency</topic><topic>Energy</topic><topic>energy balance</topic><topic>Energy. Thermal use of fuels</topic><topic>equations</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>flow rate</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Heating, air conditioning and ventilation</topic><topic>mass flow</topic><topic>Mass flow rate</topic><topic>Material and general technologies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Natural energy</topic><topic>Packed bed</topic><topic>Packed bed Parallel flow Porosity Thermal power Effective efficiency</topic><topic>Parallel flow</topic><topic>Porosity</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Space heating. Hot water</topic><topic>temperature</topic><topic>Thermal efficiency</topic><topic>Thermal power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, Prashant</creatorcontrib><creatorcontrib>Thakur, N.S.</creatorcontrib><creatorcontrib>Kumar, Anoop</creatorcontrib><creatorcontrib>Singh, Satyender</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, Prashant</au><au>Thakur, N.S.</au><au>Kumar, Anoop</au><au>Singh, Satyender</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater</atitle><jtitle>Applied energy</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>88</volume><issue>6</issue><spage>2157</spage><epage>2167</epage><pages>2157-2167</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10–20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2010.12.033</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2011-06, Vol.88 (6), p.2157-2167 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_proquest_miscellaneous_864438497 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | Accuracy air Air heaters Applied sciences Channels Devices using thermal energy Effective efficiency Energy energy balance Energy. Thermal use of fuels equations Equipments, installations and applications Exact sciences and technology flow rate Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Heating, air conditioning and ventilation mass flow Mass flow rate Material and general technologies Mathematical analysis Mathematical models Natural energy Packed bed Packed bed Parallel flow Porosity Thermal power Effective efficiency Parallel flow Porosity Solar energy Solar thermal conversion Space heating. Hot water temperature Thermal efficiency Thermal power |
title | An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20to%20predict%20the%20thermal%20performance%20of%20a%20novel%20parallel%20flow%20packed%20bed%20solar%20air%20heater&rft.jtitle=Applied%20energy&rft.au=Dhiman,%20Prashant&rft.date=2011-06-01&rft.volume=88&rft.issue=6&rft.spage=2157&rft.epage=2167&rft.pages=2157-2167&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2010.12.033&rft_dat=%3Cproquest_cross%3E864438497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671298673&rft_id=info:pmid/&rft_els_id=S0306261910005532&rfr_iscdi=true |