Investigating material trends and lattice relaxation effects for understanding electron transfer phenomena in rare-earth-doped optical materials

Rare-earth-doped insulators and semiconductors play an important role in a wide range of modern optical technologies. Knowledge of the relative energies of rare-earth ions’ localized electronic states and the band states of the host crystal is important for understanding the properties of these mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of luminescence 2011-03, Vol.131 (3), p.386-395
Hauptverfasser: Thiel, C.W., Cone, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 3
container_start_page 386
container_title Journal of luminescence
container_volume 131
creator Thiel, C.W.
Cone, R.L.
description Rare-earth-doped insulators and semiconductors play an important role in a wide range of modern optical technologies. Knowledge of the relative energies of rare-earth ions’ localized electronic states and the band states of the host crystal is important for understanding the properties of these materials and for determining the potential material performance in specific applications such as lasers, phosphors, and optical signal processing. Current understanding of the systematic variations of electron binding energies in these materials is reviewed with analysis of how lattice relaxation affects the results obtained from different experimental techniques. Detailed examples are presented for rare-earth-doped YAG and LaF 3 material systems. A method for predicting the chemical shift of the 4f electrons of rare-earth impurities from the host crystal’s photoemission spectrum is also demonstrated. Furthermore, a simple model is presented that predicts host-dependent trends in the binding energies of the rare-earth ion states in materials ranging from the elemental metals to the ionic fluorides. By understanding the systematic changes in the relative energies for different states, different ions, and different host materials, insight is gained into electron transfer transitions, valence stability, and luminescence quenching that can accelerate the development of materials for optical applications. ► Rare-earth-doped materials exhibit systematic trends in electron binding energies. ► 4f electron and host band energies are presented for rare-earth-doped YAG and LaF 3 materials. ► Lattice relaxation affects photoionization energies observed by different measurement methods. ► Chemical shifts of rare-earth impurities are predicted from host crystal photoemission spectra. ► A simple model predicts host-dependent trends in the rare-earth impurity binding energies.
doi_str_mv 10.1016/j.jlumin.2010.09.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864430802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002223131000400X</els_id><sourcerecordid>864430802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-3c7fbcf41a8df937d0f20f36097f9f525802d98453f08ce58dbcc62f2c9bcd2f3</originalsourceid><addsrcrecordid>eNqFkM9uVSEQh4nRpNfWN-iCjXF1bgc4f2BjYhqrTZq40TXhwtBycw4cgdvoW_jI5eZWl3Y1CXzzm5mPkEsGWwZsvNpv9_NhCXHLoT2B2gIfXpENkxPvJinFa7IB4Lzjgokz8raUPQAIJdWG_LmNj1hquDc1xHu6mIo5mJnWjNEVaqKjs6k1WKQZZ_OrYSlS9B5tLdSnTA_RYS61kccAnNtHbkjNJhaPma4PGNOC0dAQaTYZOzS5PnQurehoWlt2m_d3cLkgb3wr-O65npMfN5-_X3_t7r59ub3-dNfZtnjthJ38zvqeGem8EpMDz8GLEdTklR_4IIE7JftBeJAWB-l21o7cc6t21nEvzsmHU-6a089DU6CXUCzOs4mYDkXLse8FtJRG9ifS5lRKRq_XHBaTf2sG-uhf7_XJvz7616B089_a3j8PMKVd6JsPG8q_Xj5BDxOIF7keBGPjkft44rBZeQyYdbEBo0UXcnOuXQr_X-gJjAevIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864430802</pqid></control><display><type>article</type><title>Investigating material trends and lattice relaxation effects for understanding electron transfer phenomena in rare-earth-doped optical materials</title><source>Elsevier ScienceDirect Journals</source><creator>Thiel, C.W. ; Cone, R.L.</creator><creatorcontrib>Thiel, C.W. ; Cone, R.L.</creatorcontrib><description>Rare-earth-doped insulators and semiconductors play an important role in a wide range of modern optical technologies. Knowledge of the relative energies of rare-earth ions’ localized electronic states and the band states of the host crystal is important for understanding the properties of these materials and for determining the potential material performance in specific applications such as lasers, phosphors, and optical signal processing. Current understanding of the systematic variations of electron binding energies in these materials is reviewed with analysis of how lattice relaxation affects the results obtained from different experimental techniques. Detailed examples are presented for rare-earth-doped YAG and LaF 3 material systems. A method for predicting the chemical shift of the 4f electrons of rare-earth impurities from the host crystal’s photoemission spectrum is also demonstrated. Furthermore, a simple model is presented that predicts host-dependent trends in the binding energies of the rare-earth ion states in materials ranging from the elemental metals to the ionic fluorides. By understanding the systematic changes in the relative energies for different states, different ions, and different host materials, insight is gained into electron transfer transitions, valence stability, and luminescence quenching that can accelerate the development of materials for optical applications. ► Rare-earth-doped materials exhibit systematic trends in electron binding energies. ► 4f electron and host band energies are presented for rare-earth-doped YAG and LaF 3 materials. ► Lattice relaxation affects photoionization energies observed by different measurement methods. ► Chemical shifts of rare-earth impurities are predicted from host crystal photoemission spectra. ► A simple model predicts host-dependent trends in the rare-earth impurity binding energies.</description><identifier>ISSN: 0022-2313</identifier><identifier>EISSN: 1872-7883</identifier><identifier>DOI: 10.1016/j.jlumin.2010.09.025</identifier><identifier>CODEN: JLUMA8</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Binding energy ; Charge transfer ; Crystals ; Electron transfer ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lattice relaxation ; Lattices ; Luminescence ; Mathematical models ; Optical materials ; Optics ; Photoionization ; Physics ; Rare earth metals ; Rare-earth electron binding energies ; Semiconductors ; Trends</subject><ispartof>Journal of luminescence, 2011-03, Vol.131 (3), p.386-395</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-3c7fbcf41a8df937d0f20f36097f9f525802d98453f08ce58dbcc62f2c9bcd2f3</citedby><cites>FETCH-LOGICAL-c398t-3c7fbcf41a8df937d0f20f36097f9f525802d98453f08ce58dbcc62f2c9bcd2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002223131000400X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24031163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27040703$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiel, C.W.</creatorcontrib><creatorcontrib>Cone, R.L.</creatorcontrib><title>Investigating material trends and lattice relaxation effects for understanding electron transfer phenomena in rare-earth-doped optical materials</title><title>Journal of luminescence</title><description>Rare-earth-doped insulators and semiconductors play an important role in a wide range of modern optical technologies. Knowledge of the relative energies of rare-earth ions’ localized electronic states and the band states of the host crystal is important for understanding the properties of these materials and for determining the potential material performance in specific applications such as lasers, phosphors, and optical signal processing. Current understanding of the systematic variations of electron binding energies in these materials is reviewed with analysis of how lattice relaxation affects the results obtained from different experimental techniques. Detailed examples are presented for rare-earth-doped YAG and LaF 3 material systems. A method for predicting the chemical shift of the 4f electrons of rare-earth impurities from the host crystal’s photoemission spectrum is also demonstrated. Furthermore, a simple model is presented that predicts host-dependent trends in the binding energies of the rare-earth ion states in materials ranging from the elemental metals to the ionic fluorides. By understanding the systematic changes in the relative energies for different states, different ions, and different host materials, insight is gained into electron transfer transitions, valence stability, and luminescence quenching that can accelerate the development of materials for optical applications. ► Rare-earth-doped materials exhibit systematic trends in electron binding energies. ► 4f electron and host band energies are presented for rare-earth-doped YAG and LaF 3 materials. ► Lattice relaxation affects photoionization energies observed by different measurement methods. ► Chemical shifts of rare-earth impurities are predicted from host crystal photoemission spectra. ► A simple model predicts host-dependent trends in the rare-earth impurity binding energies.</description><subject>Binding energy</subject><subject>Charge transfer</subject><subject>Crystals</subject><subject>Electron transfer</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattice relaxation</subject><subject>Lattices</subject><subject>Luminescence</subject><subject>Mathematical models</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Rare earth metals</subject><subject>Rare-earth electron binding energies</subject><subject>Semiconductors</subject><subject>Trends</subject><issn>0022-2313</issn><issn>1872-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM9uVSEQh4nRpNfWN-iCjXF1bgc4f2BjYhqrTZq40TXhwtBycw4cgdvoW_jI5eZWl3Y1CXzzm5mPkEsGWwZsvNpv9_NhCXHLoT2B2gIfXpENkxPvJinFa7IB4Lzjgokz8raUPQAIJdWG_LmNj1hquDc1xHu6mIo5mJnWjNEVaqKjs6k1WKQZZ_OrYSlS9B5tLdSnTA_RYS61kccAnNtHbkjNJhaPma4PGNOC0dAQaTYZOzS5PnQurehoWlt2m_d3cLkgb3wr-O65npMfN5-_X3_t7r59ub3-dNfZtnjthJ38zvqeGem8EpMDz8GLEdTklR_4IIE7JftBeJAWB-l21o7cc6t21nEvzsmHU-6a089DU6CXUCzOs4mYDkXLse8FtJRG9ifS5lRKRq_XHBaTf2sG-uhf7_XJvz7616B089_a3j8PMKVd6JsPG8q_Xj5BDxOIF7keBGPjkft44rBZeQyYdbEBo0UXcnOuXQr_X-gJjAevIQ</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Thiel, C.W.</creator><creator>Cone, R.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Investigating material trends and lattice relaxation effects for understanding electron transfer phenomena in rare-earth-doped optical materials</title><author>Thiel, C.W. ; Cone, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-3c7fbcf41a8df937d0f20f36097f9f525802d98453f08ce58dbcc62f2c9bcd2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Binding energy</topic><topic>Charge transfer</topic><topic>Crystals</topic><topic>Electron transfer</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattice relaxation</topic><topic>Lattices</topic><topic>Luminescence</topic><topic>Mathematical models</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Rare earth metals</topic><topic>Rare-earth electron binding energies</topic><topic>Semiconductors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiel, C.W.</creatorcontrib><creatorcontrib>Cone, R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of luminescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiel, C.W.</au><au>Cone, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating material trends and lattice relaxation effects for understanding electron transfer phenomena in rare-earth-doped optical materials</atitle><jtitle>Journal of luminescence</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>131</volume><issue>3</issue><spage>386</spage><epage>395</epage><pages>386-395</pages><issn>0022-2313</issn><eissn>1872-7883</eissn><coden>JLUMA8</coden><abstract>Rare-earth-doped insulators and semiconductors play an important role in a wide range of modern optical technologies. Knowledge of the relative energies of rare-earth ions’ localized electronic states and the band states of the host crystal is important for understanding the properties of these materials and for determining the potential material performance in specific applications such as lasers, phosphors, and optical signal processing. Current understanding of the systematic variations of electron binding energies in these materials is reviewed with analysis of how lattice relaxation affects the results obtained from different experimental techniques. Detailed examples are presented for rare-earth-doped YAG and LaF 3 material systems. A method for predicting the chemical shift of the 4f electrons of rare-earth impurities from the host crystal’s photoemission spectrum is also demonstrated. Furthermore, a simple model is presented that predicts host-dependent trends in the binding energies of the rare-earth ion states in materials ranging from the elemental metals to the ionic fluorides. By understanding the systematic changes in the relative energies for different states, different ions, and different host materials, insight is gained into electron transfer transitions, valence stability, and luminescence quenching that can accelerate the development of materials for optical applications. ► Rare-earth-doped materials exhibit systematic trends in electron binding energies. ► 4f electron and host band energies are presented for rare-earth-doped YAG and LaF 3 materials. ► Lattice relaxation affects photoionization energies observed by different measurement methods. ► Chemical shifts of rare-earth impurities are predicted from host crystal photoemission spectra. ► A simple model predicts host-dependent trends in the rare-earth impurity binding energies.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jlumin.2010.09.025</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2313
ispartof Journal of luminescence, 2011-03, Vol.131 (3), p.386-395
issn 0022-2313
1872-7883
language eng
recordid cdi_proquest_miscellaneous_864430802
source Elsevier ScienceDirect Journals
subjects Binding energy
Charge transfer
Crystals
Electron transfer
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lattice relaxation
Lattices
Luminescence
Mathematical models
Optical materials
Optics
Photoionization
Physics
Rare earth metals
Rare-earth electron binding energies
Semiconductors
Trends
title Investigating material trends and lattice relaxation effects for understanding electron transfer phenomena in rare-earth-doped optical materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20material%20trends%20and%20lattice%20relaxation%20effects%20for%20understanding%20electron%20transfer%20phenomena%20in%20rare-earth-doped%20optical%20materials&rft.jtitle=Journal%20of%20luminescence&rft.au=Thiel,%20C.W.&rft.date=2011-03-01&rft.volume=131&rft.issue=3&rft.spage=386&rft.epage=395&rft.pages=386-395&rft.issn=0022-2313&rft.eissn=1872-7883&rft.coden=JLUMA8&rft_id=info:doi/10.1016/j.jlumin.2010.09.025&rft_dat=%3Cproquest_cross%3E864430802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864430802&rft_id=info:pmid/&rft_els_id=S002223131000400X&rfr_iscdi=true