Orbital reflectometry of oxide heterostructures
The occupation of electronic orbitals on the surface and interface of oxide thin films and heterostructures is a key influence over their properties, including magnetism and superconductivity. A new spectroscopy technique now provides the first quantitative, spatially resolved data of orbital occupa...
Gespeichert in:
Veröffentlicht in: | Nature materials 2011-03, Vol.10 (3), p.189-193 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 3 |
container_start_page | 189 |
container_title | Nature materials |
container_volume | 10 |
creator | Benckiser, Eva Haverkort, Maurits W. Brück, Sebastian Goering, Eberhard Macke, Sebastian Frañó, Alex Yang, Xiaoping Andersen, Ole K. Cristiani, Georg Habermeier, Hanns-Ulrich Boris, Alexander V. Zegkinoglou, Ioannis Wochner, Peter Kim, Heon-Jung Hinkov, Vladimir Keimer, Bernhard |
description | The occupation of electronic orbitals on the surface and interface of oxide thin films and heterostructures is a key influence over their properties, including magnetism and superconductivity. A new spectroscopy technique now provides the first quantitative, spatially resolved data of orbital occupation in oxide structures.
The occupation of
d
orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties
1
. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties
2
,
3
,
4
,
5
,
6
,
7
,
8
, but could not thus far be probed in a quantitative manner
9
,
10
,
11
. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ∼3% in the occupation of Ni
e
g
orbitals in adjacent atomic layers of a LaNiO
3
–LaAlO
3
superlattice, in good agreement with
ab initio
electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides. |
doi_str_mv | 10.1038/nmat2958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_864421379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864421379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-4273d21565c9c7eb552f2f6115339cc30e580c95e5df0500138dfb77f8be238e3</originalsourceid><addsrcrecordid>eNqF0MtKw0AUBuBBFFur4BNIcKMuYmfOXJIspXiDQje6DsnkjKbkUmcmYN_eKW0VdOFqDszHfzg_IeeM3jLK02nXFh4ymR6QMROJioVS9HA3MwYwIifOLSkFJqU6JiNgkCUKYEymC1vWvmgii6ZB7fsWvV1HvYn6z7rC6B092t55O2g_WHSn5MgUjcOz3Tshrw_3L7OneL54fJ7dzWMtUupjAQmvwjYldaYTLKUEA0YxJjnPtOYUZUp1JlFWhkpKGU8rUyaJSUsEniKfkKtt7sr2HwM6n7e109g0RYf94PJUCQGMJ9n_UnIAKZQI8vKXXPaD7cIZAUG2iYOArrdIh7NdaCVf2bot7DpnNN-Une_LDvRilzeULVbfcN9uADdb4MJX94b2Z-GfsC_vQoZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852921372</pqid></control><display><type>article</type><title>Orbital reflectometry of oxide heterostructures</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Benckiser, Eva ; Haverkort, Maurits W. ; Brück, Sebastian ; Goering, Eberhard ; Macke, Sebastian ; Frañó, Alex ; Yang, Xiaoping ; Andersen, Ole K. ; Cristiani, Georg ; Habermeier, Hanns-Ulrich ; Boris, Alexander V. ; Zegkinoglou, Ioannis ; Wochner, Peter ; Kim, Heon-Jung ; Hinkov, Vladimir ; Keimer, Bernhard</creator><creatorcontrib>Benckiser, Eva ; Haverkort, Maurits W. ; Brück, Sebastian ; Goering, Eberhard ; Macke, Sebastian ; Frañó, Alex ; Yang, Xiaoping ; Andersen, Ole K. ; Cristiani, Georg ; Habermeier, Hanns-Ulrich ; Boris, Alexander V. ; Zegkinoglou, Ioannis ; Wochner, Peter ; Kim, Heon-Jung ; Hinkov, Vladimir ; Keimer, Bernhard</creatorcontrib><description>The occupation of electronic orbitals on the surface and interface of oxide thin films and heterostructures is a key influence over their properties, including magnetism and superconductivity. A new spectroscopy technique now provides the first quantitative, spatially resolved data of orbital occupation in oxide structures.
The occupation of
d
orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties
1
. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties
2
,
3
,
4
,
5
,
6
,
7
,
8
, but could not thus far be probed in a quantitative manner
9
,
10
,
11
. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ∼3% in the occupation of Ni
e
g
orbitals in adjacent atomic layers of a LaNiO
3
–LaAlO
3
superlattice, in good agreement with
ab initio
electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2958</identifier><identifier>PMID: 21297622</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1038 ; 639/301/119/995 ; 639/301/930/12 ; Anisotropy ; Atoms & subatomic particles ; Biomaterials ; Chemical bonds ; Chemical compounds ; Chemistry and Materials Science ; Condensed Matter Physics ; Electron transfer ; letter ; Materials Science ; Mathematical models ; Metals ; Modulation ; Nanotechnology ; Nickel ; Occupation ; Optical and Electronic Materials ; Orbitals ; Oxides ; Physical properties ; Physics ; Superlattices</subject><ispartof>Nature materials, 2011-03, Vol.10 (3), p.189-193</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-4273d21565c9c7eb552f2f6115339cc30e580c95e5df0500138dfb77f8be238e3</citedby><cites>FETCH-LOGICAL-c480t-4273d21565c9c7eb552f2f6115339cc30e580c95e5df0500138dfb77f8be238e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2958$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2958$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21297622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benckiser, Eva</creatorcontrib><creatorcontrib>Haverkort, Maurits W.</creatorcontrib><creatorcontrib>Brück, Sebastian</creatorcontrib><creatorcontrib>Goering, Eberhard</creatorcontrib><creatorcontrib>Macke, Sebastian</creatorcontrib><creatorcontrib>Frañó, Alex</creatorcontrib><creatorcontrib>Yang, Xiaoping</creatorcontrib><creatorcontrib>Andersen, Ole K.</creatorcontrib><creatorcontrib>Cristiani, Georg</creatorcontrib><creatorcontrib>Habermeier, Hanns-Ulrich</creatorcontrib><creatorcontrib>Boris, Alexander V.</creatorcontrib><creatorcontrib>Zegkinoglou, Ioannis</creatorcontrib><creatorcontrib>Wochner, Peter</creatorcontrib><creatorcontrib>Kim, Heon-Jung</creatorcontrib><creatorcontrib>Hinkov, Vladimir</creatorcontrib><creatorcontrib>Keimer, Bernhard</creatorcontrib><title>Orbital reflectometry of oxide heterostructures</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The occupation of electronic orbitals on the surface and interface of oxide thin films and heterostructures is a key influence over their properties, including magnetism and superconductivity. A new spectroscopy technique now provides the first quantitative, spatially resolved data of orbital occupation in oxide structures.
The occupation of
d
orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties
1
. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties
2
,
3
,
4
,
5
,
6
,
7
,
8
, but could not thus far be probed in a quantitative manner
9
,
10
,
11
. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ∼3% in the occupation of Ni
e
g
orbitals in adjacent atomic layers of a LaNiO
3
–LaAlO
3
superlattice, in good agreement with
ab initio
electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.</description><subject>639/301/1034/1038</subject><subject>639/301/119/995</subject><subject>639/301/930/12</subject><subject>Anisotropy</subject><subject>Atoms & subatomic particles</subject><subject>Biomaterials</subject><subject>Chemical bonds</subject><subject>Chemical compounds</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electron transfer</subject><subject>letter</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Modulation</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Occupation</subject><subject>Optical and Electronic Materials</subject><subject>Orbitals</subject><subject>Oxides</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Superlattices</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0MtKw0AUBuBBFFur4BNIcKMuYmfOXJIspXiDQje6DsnkjKbkUmcmYN_eKW0VdOFqDszHfzg_IeeM3jLK02nXFh4ymR6QMROJioVS9HA3MwYwIifOLSkFJqU6JiNgkCUKYEymC1vWvmgii6ZB7fsWvV1HvYn6z7rC6B092t55O2g_WHSn5MgUjcOz3Tshrw_3L7OneL54fJ7dzWMtUupjAQmvwjYldaYTLKUEA0YxJjnPtOYUZUp1JlFWhkpKGU8rUyaJSUsEniKfkKtt7sr2HwM6n7e109g0RYf94PJUCQGMJ9n_UnIAKZQI8vKXXPaD7cIZAUG2iYOArrdIh7NdaCVf2bot7DpnNN-Une_LDvRilzeULVbfcN9uADdb4MJX94b2Z-GfsC_vQoZP</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Benckiser, Eva</creator><creator>Haverkort, Maurits W.</creator><creator>Brück, Sebastian</creator><creator>Goering, Eberhard</creator><creator>Macke, Sebastian</creator><creator>Frañó, Alex</creator><creator>Yang, Xiaoping</creator><creator>Andersen, Ole K.</creator><creator>Cristiani, Georg</creator><creator>Habermeier, Hanns-Ulrich</creator><creator>Boris, Alexander V.</creator><creator>Zegkinoglou, Ioannis</creator><creator>Wochner, Peter</creator><creator>Kim, Heon-Jung</creator><creator>Hinkov, Vladimir</creator><creator>Keimer, Bernhard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Orbital reflectometry of oxide heterostructures</title><author>Benckiser, Eva ; Haverkort, Maurits W. ; Brück, Sebastian ; Goering, Eberhard ; Macke, Sebastian ; Frañó, Alex ; Yang, Xiaoping ; Andersen, Ole K. ; Cristiani, Georg ; Habermeier, Hanns-Ulrich ; Boris, Alexander V. ; Zegkinoglou, Ioannis ; Wochner, Peter ; Kim, Heon-Jung ; Hinkov, Vladimir ; Keimer, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-4273d21565c9c7eb552f2f6115339cc30e580c95e5df0500138dfb77f8be238e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/1034/1038</topic><topic>639/301/119/995</topic><topic>639/301/930/12</topic><topic>Anisotropy</topic><topic>Atoms & subatomic particles</topic><topic>Biomaterials</topic><topic>Chemical bonds</topic><topic>Chemical compounds</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electron transfer</topic><topic>letter</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Modulation</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Occupation</topic><topic>Optical and Electronic Materials</topic><topic>Orbitals</topic><topic>Oxides</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benckiser, Eva</creatorcontrib><creatorcontrib>Haverkort, Maurits W.</creatorcontrib><creatorcontrib>Brück, Sebastian</creatorcontrib><creatorcontrib>Goering, Eberhard</creatorcontrib><creatorcontrib>Macke, Sebastian</creatorcontrib><creatorcontrib>Frañó, Alex</creatorcontrib><creatorcontrib>Yang, Xiaoping</creatorcontrib><creatorcontrib>Andersen, Ole K.</creatorcontrib><creatorcontrib>Cristiani, Georg</creatorcontrib><creatorcontrib>Habermeier, Hanns-Ulrich</creatorcontrib><creatorcontrib>Boris, Alexander V.</creatorcontrib><creatorcontrib>Zegkinoglou, Ioannis</creatorcontrib><creatorcontrib>Wochner, Peter</creatorcontrib><creatorcontrib>Kim, Heon-Jung</creatorcontrib><creatorcontrib>Hinkov, Vladimir</creatorcontrib><creatorcontrib>Keimer, Bernhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benckiser, Eva</au><au>Haverkort, Maurits W.</au><au>Brück, Sebastian</au><au>Goering, Eberhard</au><au>Macke, Sebastian</au><au>Frañó, Alex</au><au>Yang, Xiaoping</au><au>Andersen, Ole K.</au><au>Cristiani, Georg</au><au>Habermeier, Hanns-Ulrich</au><au>Boris, Alexander V.</au><au>Zegkinoglou, Ioannis</au><au>Wochner, Peter</au><au>Kim, Heon-Jung</au><au>Hinkov, Vladimir</au><au>Keimer, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital reflectometry of oxide heterostructures</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>10</volume><issue>3</issue><spage>189</spage><epage>193</epage><pages>189-193</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The occupation of electronic orbitals on the surface and interface of oxide thin films and heterostructures is a key influence over their properties, including magnetism and superconductivity. A new spectroscopy technique now provides the first quantitative, spatially resolved data of orbital occupation in oxide structures.
The occupation of
d
orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties
1
. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties
2
,
3
,
4
,
5
,
6
,
7
,
8
, but could not thus far be probed in a quantitative manner
9
,
10
,
11
. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ∼3% in the occupation of Ni
e
g
orbitals in adjacent atomic layers of a LaNiO
3
–LaAlO
3
superlattice, in good agreement with
ab initio
electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21297622</pmid><doi>10.1038/nmat2958</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2011-03, Vol.10 (3), p.189-193 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_864421379 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301/1034/1038 639/301/119/995 639/301/930/12 Anisotropy Atoms & subatomic particles Biomaterials Chemical bonds Chemical compounds Chemistry and Materials Science Condensed Matter Physics Electron transfer letter Materials Science Mathematical models Metals Modulation Nanotechnology Nickel Occupation Optical and Electronic Materials Orbitals Oxides Physical properties Physics Superlattices |
title | Orbital reflectometry of oxide heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T00%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20reflectometry%20of%20oxide%20heterostructures&rft.jtitle=Nature%20materials&rft.au=Benckiser,%20Eva&rft.date=2011-03-01&rft.volume=10&rft.issue=3&rft.spage=189&rft.epage=193&rft.pages=189-193&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2958&rft_dat=%3Cproquest_cross%3E864421379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852921372&rft_id=info:pmid/21297622&rfr_iscdi=true |